BackgroundMalaria remains endemic at low levels in the south-eastern provinces of Iran bordering Afghanistan and Pakistan, with the majority of cases attributable to P. vivax. The national guidelines recommend chloroquine (CQ) as blood-stage treatment for uncomplicated P. vivax, but the large influx of imported cases enhances the risk of introducing CQ resistance (CQR).Methodology and Principal FindingsThe genetic diversity at pvmdr1, a putative modulator of CQR, and across nine putatively neutral short tandem repeat (STR) markers were assessed in P. vivax clinical isolates collected between April 2007 and January 2013 in Hormozgan Province, south-eastern Iran. One hundred blood samples were collected from patients with microscopy-confirmed P. vivax enrolled at one of five district clinics. In total 73 (73%) were autochthonous cases, 23 (23%) imported cases from Afghanistan or Pakistan, and 4 (4%) with unknown origin. 97% (97/100) isolates carried the F1076L mutation, but none carried the Y976F mutation. STR genotyping was successful in 71 (71%) isolates, including 57(57%) autochthonous and 11 (11%) imported cases. Analysis of population structure revealed 2 major sub-populations, K1 and K2, with further sub-structure within K2. The K1 sub-population had markedly lower diversity than K2 (HE = 0.06 vs HE = 0.82) suggesting that the sub-populations were sustained by distinct reservoirs with differing transmission dynamics, possibly reflecting local versus imported/introduced populations. No notable separation was observed between the local and imported cases although the sample size was limited.ConclusionsThe contrasting low versus high diversity in the two sub-populations (K1 and K2) infers that a combination of local transmission and cross-border malaria from higher transmission regions shape the genetic make-up of the P. vivax population in south-eastern Iran. There was no molecular evidence of CQR amongst the local or imported cases, but ongoing clinical surveillance is warranted.
Atherosclerosis is a complex multifactorial disorder. Studies show that infectious microbial agents may play an important role in the development of atherosclerosis; however, these findings are conflicting. This study investigated the presence of Chlamydia pneumoniae DNA in atherosclerotic plaques of patients suffering from coronary artery disease. In a cross-sectional study, 85 patients (43 females and 42 males with mean age of 61±9.5, range 42-82 years) referred for coronary artery bypass grafting (CABG) and thoracic biopsy as the control groups were enrolled for this study. Standard questionnaires, including demographic and clinical evaluation were administered. Obtained specimens were processed and then nested polymerase chain reaction with primers for Pst1 fragment was carried out to detect Chlamydia pneumoniae DNA. Statistical analysis was done using the SPSS software. Of note, in 25 out of the 85 patients (29.4%), C. pneumoniae was detected within atherosclerotic plaques, whereas, 5 out of the 85 thoracic biopsy (5.9%) were positive for the presence of the mentioned bacteria in internal thoracic artery. There was a statistically significant association between atherosclerotic plaque (study group) and thoracic biopsy (control group) in terms of C. pneumoniae positivity (P=0.0001). The findings of this study support the hypothesis that C. pneumoniae is associated with atherosclerosis.
Hospital-acquired bacterial pneumonia (HABP) is one of the most important causes of morbidity, mortality and economic problems especially for patients admitted in the intensive care unit (ICU) ward. The aim of this study was to determine the incidence of nosocomial pneumonia in ICU, identify the causative bacteria and their resistance profiles. This cross sectional study was performed on 214 patients who were admitted in the ICU ward of a general hospital requiring mechanical ventilation for at least 48 h. Identification of HABP was based on the clinical signs manifested 48 h or more after admission, new chest X-ray infiltrates and microbiologic examination of endo tracheal secretion. Data were analyzed using SPSS 21 to perform the descriptive statistics. The isolated gram negative bacteria were Klebsiella pneumoniae (50%), Staphylococcus aureus (18.7%), Acinetobacter baumannii (12.5%), Escherichia coli (12.5%) and Pseudomonas aeroginosa (6.3%). The maximum antimicrobial resistance of gram negative bacteria was to Cefazolin (100%) and Ampicillin (84.6%), while antimicrobial resistance to Clindamycin, Azithromycin, Amoxycillin+clavulanate, Trimethoprim+ sulfamethoxazole and Ciprofloxacin was 33.3%. No resistance was seen towards carbapenems. The most frequent gram negative isolated bacterium was K. pneumoniae, and maximum antimicrobial resistance rate was observed for Cefazolin and Ampicillin, which is due to betalactamase production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.