Water inside a nanocapillary becomes ordered, resulting in unconventional behavior. A profound enhancement of water flow inside nanometer thin capillaries made of graphene has been observed [B. Radha et.al., Nature (London) 538, 222 (2016)]. Here we explain this enhancement as due to the large density and the extraordinary viscosity of water inside the graphene nanocapillaries. Using the Hagen-Poiseuille theory with slippage-boundary condition and incorporating disjoining pressure term in combination with results from molecular dynamics (MD) simulations, we present an analytical theory that elucidates the origin of the enhancement of water flow inside hydrophobic nanocapillaries. Our work reveals a distinctive dependence of water flow in a nanocapillary on the structural properties of nanoconfined water in agreement with experiment, which opens a new avenue in nanofluidics.
The adsorption of trimesic acid (TMA) on a graphene surface has been studied with density functional theory. By considering the adsorption of a single TMA molecule on different sites on graphene, we have been able to perform a detailed analysis of the equilibrium geometry, charge transfer, electronic properties in terms of density of states and band structure, and finally scanning tunneling microscopy simulations on those simple systems. The results for isolated adsorption were then compared to the behavior of the TMA unit within two different self-assembled monolayers. Our results indicate that structural deformations of TMA may significantly contribute to the magnitude of p-doping and band gap opening in graphene. The formation of a hydrogen bonding network within the assembly improves the stability of the adlayer, but its adhesion on graphene is significantly reduced. The magnitude of p-doping in graphene per TMA unit remains nearly constant from the isolated to the assembled systems, but the magnitude of the band gap opening appears to be strongly correlated with the breaking of symmetry of π-states of graphene by the TMA patterning on the surface. Our results suggest that polymorphism in self-assembled adlayers could be used to tune and control the electronic properties of graphene.
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.