Cavity arrays have been previously identified to disrupt the sweep events and consequently the bursting cycle in the boundary layer by capturing the structures responsible for the Reynolds stresses. In the present study, the sensitivity of a flushed-surface cavity array in reducing the turbulent energy production has been investigated. Two plates of varying thicknesses and four different backing cavity volumes were considered, at three different Reynolds numbers. The volume of the backing cavity was shown to be the most important characteristic in determining the attenuation of streamwise velocity fluctuations within the logarithmic region of the turbulent boundary layer. However, the results also demonstrated that the orifice length of the cavity array had negligible effect in modifying the reduction of the turbulent energy by the cavity array in this investigation. The results show that the maximum reduction in turbulence generation achieved for this study occurs when the backing volume is 3.1 × 106 times greater than the viscous length scale at Reθ = 3771. The reduction in turbulence intensity, sweep intensity, and energy spectrum were shown to be 5.6%, 6.3%, and 13.4%, respectively. By decreasing the cavity volume to zero, no change in the turbulent boundary layer turbulence statistics was found. The results suggest a larger reduction in turbulence intensity, sweep intensity, and energy spectrum that can be achieved with a larger backing volume.
Cavity arrays have been identified as a potential passive device to disrupt and capture sweep events, which are responsible for the excess Reynolds stresses in the boundary layer. In the present study, the mechanism of the attenuation of captured sweep events has been analyzed, as well as the non-linear relationship between the volume of the backing cavity and the reduction in sweep intensity. The influence of cavity array on the turbulent boundary layer has been analyzed, with a total of six different backing cavity arrangements with varying volumes. Three of the backing cavities have been used to determine the non-linear relationship between the effectiveness of the cavity array in reducing sweep intensity and the volume of the backing cavity. The other three have been used to determine the mechanism by which the arrays manipulate the captured sweep events. The pre-multiplied energy spectra of multiple velocity histories were significantly reduced, by up to 12.5%, in the low and mid-range wavelength values (λx+<104), which is associated with the coherent structures. The results show that the maximum reduction in sweep intensity of approximately 7% may be obtained when Reθ = 3771. It has been demonstrated that the non-linear relationship between sweep event intensity reduction and cavity volume has reached an upper limit in this investigation. Results from this study have revealed that the cavity array weakens the sweep intensity of the captured sweep events by damping the energy of the events through the friction losses in the cavity array and also in the large volume of the backing cavity.
In the present study, the optimal two-dimensional (2D) tripping technique for inducing a naturally fully developed turbulent boundary layer in wind tunnels has been investigated. Various tripping techniques were tested, including wires of different diameters and changes in roughness. Experimental measurements were taken on a flat plate in a wind tunnel at a number of locations along the flat plate and at a variety of flow speeds using hot-wire anemometry to measure the boundary layer resulting from each tripping method. The results have demonstrated that to produce a natural turbulent boundary layer using a 2D protuberance, the height of the trip must be less than the undisturbed boundary layer thickness. Using such a trip was shown to reduce the development length of the turbulent boundary layer by approximately 50%. This was shown to hold true for all Reynolds numbers investigated (Rex=1.2×105−1.5×106). The present study provides an insight into the effect of the investigated trip techniques on the induced transition of a laminar boundary layer into turbulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.