Migraine is the sixth most prevalent disease globally, a major cause of disability, and it imposes an enormous personal and socio‐economic burden. Migraine treatment is often limited by insufficient therapy response, leading to the need for individually adjusted treatment. In this review, we analyse historical and current pharmaceutical development approaches in acute and chronic migraine based on a comprehensive and systematic analysis of Food and Drug Administration (FDA)‐approved drugs and those under investigation. The development of migraine therapeutics has significantly intensified during the last 3 years, as shown by our analysis of the trends of drug development between 1970 and 2020. The spectrum of drug targets has expanded considerably, which has been accompanied by an increase in the number of specialised clinical trials. This review highlights the mechanistic implications of FDA‐approved and currently investigated drugs and discusses current and future therapeutic options based on identified drug classes of interest.
Background: This systematic review summarizes the impact of pharmacogenetics on the effect and safety of non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants when used for pain treatment. Methods: A systematic literature search was performed according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines regarding the human in vivo efficacy and safety of NSAIDs and antidepressants in pain treatment that take pharmacogenetic parameters into consideration. Studies were collected from PubMed, Scopus, and Web of Science up to the cutoff date 18 October 2021. Results: Twenty-five articles out of the 6547 initially detected publications were identified. Relevant medication–gene interactions were noted for drug safety. Interactions important for pain management were detected for (1) ibuprofen/CYP2C9; (2) celecoxib/CYP2C9; (3) piroxicam/CYP2C8, CYP2C9; (4) diclofenac/CYP2C9, UGT2B7, CYP2C8, ABCC2; (5) meloxicam/CYP2C9; (6) aspirin/CYP2C9, SLCO1B1, and CHST2; (7) amitriptyline/CYP2D6 and CYP2C19; (8) imipramine/CYP2C19; (9) nortriptyline/CYP2C19, CYP2D6, ABCB1; and (10) escitalopram/HTR2C, CYP2C19, and CYP1A2. Conclusions: Overall, a lack of well powered human in vivo studies assessing the pharmacogenetics in pain patients treated with NSAIDs or antidepressants is noted. Studies indicate a higher risk for partly severe side effects for the CYP2C9 poor metabolizers and NSAIDs. Further in vivo studies are needed to consolidate the relevant polymorphisms in NSAID safety as well as in the efficacy of NSAIDs and antidepressants in pain management.
Migraine is a complex neurological disorder and a major cause of disability. A wide range of different drug classes such as triptans, antidepressants, anticonvulsants, analgesics, and beta-blockers are used in acute and preventive migraine therapy. Despite a considerable progress in the development of novel and targeted therapeutic interventions during recent years, e.g., drugs that inhibit the calcitonin gene-related peptide (CGRP) pathway, therapy success rates are still unsatisfactory. The diversity of drug classes used in migraine therapy partly reflects the limited perception of migraine pathophysiology. Genetics seems to explain only to a minor extent the susceptibility and pathophysiological aspects of migraine. While the role of genetics in migraine has been extensively studied in the past, the interest in studying the role of gene regulatory mechanisms in migraine pathophysiology is recently evolving. A better understanding of the causes and consequences of migraine-associated epigenetic changes could help to better understand migraine risk, pathogenesis, development, course, diagnosis, and prognosis. Additionally, it could be a promising avenue to discover new therapeutic targets for migraine treatment and monitoring. In this review, we summarize the state of the art regarding epigenetic findings in relation to migraine pathogenesis and potential therapeutic targets, with a focus on DNA methylation, histone acetylation, and microRNA-dependent regulation. Several genes and their methylation patterns such as CALCA (migraine symptoms and age of migraine onset), RAMP1, NPTX2, and SH2D5 (migraine chronification) and microRNA molecules such as miR-34a-5p and miR-382-5p (treatment response) seem especially worthy of further study regarding their role in migraine pathogenesis, course, and therapy. Additionally, changes in genes including COMT, GIT2, ZNF234, and SOCS1 have been linked to migraine progression to medication overuse headache (MOH), and several microRNA molecules such as let-7a-5p, let-7b-5p, let-7f-5p, miR-155, miR-126, let-7g, hsa-miR-34a-5p, hsa-miR-375, miR-181a, let-7b, miR-22, and miR-155-5p have been implicated with migraine pathophysiology. Epigenetic changes could be a potential tool for a better understanding of migraine pathophysiology and the identification of new therapeutic possibilities. However, further studies with larger sample sizes are needed to verify these early findings and to be able to establish epigenetic targets as disease predictors or therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.