We solved one dimensional Schrodinger equation in a H2 + molecular environment by using 3 femtosecond homogeneous and nonhomogeneous laser fields. In homogeneous case, we found out that larger inter nuclear distances result in earlier ionization and also more instability in the wave packet. We deducted that the more the instability is, the more modulated the power spectrum will be. So, by choosing a fixed 1.96 atomic units inter nuclear distance, we investigated high harmonic generation in both linear and nonlinear nonhomogeneous laser pulses. We observed that in comparison with the linear case, in nonlinear one, the plateau possessed higher intensity harmonics. On the other hand, in this case, cutoff order occurred on higher frequency. By superposing several harmonics near cutoff region, we predicted the generation of a 73 attosecond pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.