high harmonic generation is a useful tool for the generation of short, intense attosecond pulses. In order to simulate high harmonic generation, we performed a numerical solution to the time dependent Schrödinger equation. by considering dipole approximation, we predicted generation of a 53 attosecond pulse. In order to see the time and frequency of emission of attosecond pulse, we exploit time frequency analysis. On the other hand, because of uncertainty between time and frequency, it would be of high importance whether which analysis is been applied. our studies show that Gabor analysis exhibits the least uncertainty between time and frequency components. And at least, we set the balance between time and frequency distribution by altering the window size.
Our work is based on high harmonic generation in a gaseous medium (helium ion), by exploiting gold bowtie nanostructures as laser field amplifiers. As the result of emission of a laser pulse, the wave function of the atom varies with time; so, it is necessary to solve 1D time-dependent Schrödinger equation by means of split operator method. By illumination of a short duration, long wavelength three color laser pulse inside the gap, the enhanced field not only changes with time, but also varies in space. In this work we considered this space inhomogeneity in linear and nonlinear schemes. We show that in nonlinear case, the plateau region is more extended. We also show that in larger gaps, cutoff occurs on higher frequencies. But limitation of electron motion in bowtie nanostructures leads to the choice of an optimum 16 nm gap size in our case. We predict that, by the superposition of supercontinuum harmonics, a 26 attosecond pulse can be generated.
Diffuse reflectance spectroscopy (DRS) can be regarded as a solid state technique contribution to monitoring the process of encapsulation of transition metal complexes into cavities of zeolites. By employing DRS, it was revealed that the effectiveness of a method suggested for higher encapsulation of a tris(bipyridine)cobalt(II) complex into zeolite Y can easily be manifested. In addition to that, simple diffuse reflectance spectra give information about a relative amount of two spin states of the cobalt bipyridine complexes and their alteration upon the method used.
We solved one dimensional Schrodinger equation in a H2 + molecular environment by using 3 femtosecond homogeneous and nonhomogeneous laser fields. In homogeneous case, we found out that larger inter nuclear distances result in earlier ionization and also more instability in the wave packet. We deducted that the more the instability is, the more modulated the power spectrum will be. So, by choosing a fixed 1.96 atomic units inter nuclear distance, we investigated high harmonic generation in both linear and nonlinear nonhomogeneous laser pulses. We observed that in comparison with the linear case, in nonlinear one, the plateau possessed higher intensity harmonics. On the other hand, in this case, cutoff order occurred on higher frequency. By superposing several harmonics near cutoff region, we predicted the generation of a 73 attosecond pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.