Marine propeller blade geometries, especially LNG carriers, are very complicated and determining the hydrodynamic performance of these propellers using experimental work is very expensive, time consuming and has many difficulties in calibration of marine laboratory facilities. This paper presents the assessment on the effect of turbulent model and mesh density on propeller hydrodynamic parameters. Besides that, this paper focuses on the LNG carrier Tanaga class propeller hydrodynamic performance coefficients such as Kt, Kq and η, with respect to the different advance coefficient (j). Finally, the results from numerical simulation that were calculated based on RANS (Reynolds Averaged Navier Stocks) equations, were compared with existing experimental results, followed by analysis and discussion sections. As a result the maximum hydrodynamic propeller efficiency occurred when j=0.84.
Recently, CFD (Computational Fluid Dynamics) is being increasingly used to investigation of the flow around high-rise buildings. In this study, prediction of wind flow around two cases high-rise buildings model placed within the surface boundary layer were carried out using various turbulence models. The accuracy of two-equation turbulence models were compared with experimental data of Architectural Institute of Japan (AIJ).as a result, all two-equation models are shown overestimation the reattachment length behind the buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.