The protein complex S100A8/A9, abundant in the cytosol of neutrophils, is secreted from the cells upon cellular activation and induces apoptosis in tumor cell lines and normal fibroblasts in a zinc-reversible manner. In the present study, we present evidence that the S100A8/A9 also exerts its apoptotic effect by a zinc-independent mechanism. Treatment of the colon carcinoma cells with different concentrations of human S100A8/A9 or the metal ion chelator diethylenetriaminepentacetic acid (DTPA) resulted in a significant increase of cell death. Annexin V/phosphatidylinositol and Hoechst 33258 staining revealed that cell death was mainly of the apoptotic type. A significant increase in the activity of caspase-3 and -9 was observed in both cell lines after treatment. Caspase-8 activation was negligible in both cell lines. The cytotoxicity/apoptotic effect of human S100A8/A9 and DTPA was inhibited significantly (P<0.05) by Zn ؉2 and Cu
؉2, more effectively than by Ca 2؉ and Mg
2؉. The antioxidant N-acetyl-Lcysteine inhibited the cytotoxicity/apoptotic effect of S100A8/A9 and DTPA. However, as a result of the different time-courses of both agents and that the S100A8/A9-induced apoptosis was not completely reversed, we conclude that S100A8/A9 exerts its apoptotic effect on two colon carcinoma cell lines through a dual mechanism: one via zinc exclusion from the target cells and the other through a yet-undefined mechanism, probably relaying on the cell-surface receptor(s). J. Leukoc. Biol. 76: 169 -175; 2004.
The activation of protein kinase G (PKG) by cyclic guanosine 3,5-monophosphate (cGMP) has become of considerable interest as a novel molecular approach for the induction of apoptosis in cancer cells. The present study was designed to examine the effects of cGMP and PKG on cell growth and apoptosis in the human breast cancer cell lines, MCF-7 and MDA-MB-468. To achieve this, 1-benzyl-3-(5P-hydroxymethyl-2P-furyl) indazole (YC-1), a soluble guanylyl cyclase activator, and 8-bromo-cGMP (8-br-cGMP), a membrane-permeant and phosphodiesterase-resistant analogue of cGMP, were employed in MCF-7 and MDA-MB-468 cells. Then, the role of PKG in the induction of apoptosis was evaluated using KT5823 and Rp-8-pCPT-cGMP as specific inhibitors of PKG. The expression of PKG isoforms in these cell lines was also investigated. KT5823 and Rp-8-pCPT-cGMP significantly attenuated the loss of cell viability caused by YC-1 and 8-br-cGMP in these cells. This study provides direct evidence that the activation of PKG by cGMP induces growth inhibition and apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines.
Our results suggest that adenosine induced apoptosis in prostate cancer cells via the mitochondrial pathway and is related to the adenosine receptors. These data might suggest that adenosine could be used as an agent for the treatment of prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.