Nucleic acid immunization has recently exhibited a great promise for immunotherapy of various diseases. However, it is now clear that powerful strategies are imminently needed to improve their efficiency. In this regard, whole bacteriophage particles have been described as efficient DNA vaccine delivery vehicles, capable of circumventing the limitations of naked DNA immunization. Moreover, phage particles could be engineered to display specific peptides on their surfaces. Given these inherent characteristics of phages, we have designed a novel hybrid phage-DNA immunization vector using both M13 and pAAV plasmid elements. Following the construction and in vitro confirmation of the designed vectors, they were used for comparative mice immunization, carrying the same DNA sequence. The results indicated the efficacy of the designed hybrid phage particles, to elicit higher humoral immunity, in comparison to conventional DNA-immunization vectors (pCI). In light of these findings, it could be concluded that using adeno-associated virus (AAV) expression cassette along with displaying TAT peptide on the surface of the phage particle could be deemed as an appealing strategy to enhance the DNA-immunization and vaccination efficacy.
Aim: DKK1 is reported to be produced at high levels by myeloma cells. Therefore, the applicability of DKK1 as a tumor marker for multiple myeloma (MM) diagnosis was examined. Methods: Serum samples were collected and analyzed by DKK1 concentration kit and capillary zone electrophoresis. Then, the obtained results were statically analyzed. Results: It has been determined that the 10 ng/ml of DKK1 is the optimal level for MM diagnosis. Moreover, there was an ascending linear correlation between the DKK1 concentration and γ peak. Discussion: The observed correlation could be rooted in the positive feedback loop between MM cells and the mesenchymal stem cells. In view of these results, DKK1 could be deemed as diagnostic marker for MM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.