Among different models for determining the habitable zone (HZ) around a star, a Latitudinal Energy Balance Model (LEBM) is very beneficial due to its parametricity which keeps a good balance between complexity and simulation time. This flexibility makes the LEBM an excellent tool to assess the impact of some key physical parameters on the temperature and the habitability of a planet. Among different physical parameters, some of them, up until now, cannot be determined by any method such as the planet’s spin obliquity, diurnal period, ocean-land ratio, and pressure level. Here we apply this model to study the effect of these unknown parameters on the habitability of three exoplanets located in the inner, outer, and middle of their optimistic HZ. Among the examined parameters, the impact of pressure is more straightforward. It has a nearly direct relation with temperature and also with the habitability in the case of a cold planet. The effect of other parameters is discussed with details. To quantify the impact of all these unknown parameters we utilize a statistical interface which provides us with the conditional probability on habitability status of each planet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.