Photoplethysmography (PPG) is a technique to detect blood volume changes in an optical way. Representative PPG applications are the measurements of oxygen saturation, heart rate, and respiratory rate. However, PPG signals are sensitive to motion and noise artifacts (MNAs) especially when they are obtained from smartphone cameras. Moreover, PPG signals are different among users and each individual’s PPG signal has a unique characteristic. Hence, an effective MNA detection and reduction method for smartphone PPG signals, which adapts itself to each user in a personalized way, is highly demanded. Here, a concept of the probabilistic neural network (PNN) is introduced to be used with the proposed extracted parameters. The signal amplitude, standard deviation of peak to peak time intervals and amplitudes, along with the mean of moving standard deviation, signal slope changes, and the optimal autoregressive (AR) model order are proposed for effective MNA detection. Accordingly, the performance of the proposed personalized algorithm is compared with conventional MNA detection algorithms. As performance metrics, we considered accuracy, sensitivity, and specificity. The results show that the overall performance of the personalized MNA detection is enhanced compared to the generalized algorithm. The average values of the accuracy, sensitivity and specificity of the personalized one are 98.07%, 92.6%, and 99.78%, respectively, while these are 89.92%, 84.21%, and 93.63% for the general one.
Recently, smartphones with mobile health applications have become promising tools in the healthcare industry due to their convenience, ubiquity for patients, and the ability to gather data in real time. In this paper, we propose a novel non-invasive, portable, and cuff-less method for monitoring BP by only using the smartphones' camera. Our experiment uses pulse transit time (PTT) between two separate photoplethysmogram (PPG) signals to estimate the subjects' systolic blood pressure (SBP) and diastolic blood pressure (DBP). Our proposed method first measures the subject's PPG signals from his/her index fingers using the smartphones' camera. Then, filtering and peak detection algorithms of the proposed method reduce the motion and noise artifacts in the PPG signals. Finally, the proposed method estimates SBP and DBP based on a linear regression model which was trained and tested on 30 trials with six healthy subjects. We evaluated the proposed method by comparing BP values of the proposed method with those of the reference (or gold-standard) device in terms of mean absolute error (MAE), standard deviation of error (SD), and R-squared (R 2) value of the cross-validation. Experimental results show that the proposed method estimates the average of MAE ± SD is 2.07 ± 2.06 mm Hg for SBP estimation, and 2.12 ± 1.85 mm Hg for DBP estimation. These estimates are lower than accurate BP estimation standard (5 ± 8 mmHg). INDEX TERMS Hypertension, blood pressure, cuff-less, smartphone, photoplethysmogram (PPG), pulse transit time (PTT).
We have recently found that our previously-developed atrial fibrillation (AF) detection algorithm for smartphones can give false positives when subjects’ fingers or hands move, as we rely on proper finger placement over the smartphone camera to collect the signal of interest. Specifically, smartphone camera pulsatile signals that are obtained from normal sinus rhythm (NSR) subjects but are corrupted by motion and noise artifacts (MNAs) are frequently detected as AF. AF and motion-corrupted episodes have the similar characteristic that pulse-to-pulse intervals (PPIs) are irregular. We have developed an MNA-resilient smartphone-based AF detection algorithm that first discriminates and eliminates MNA-corrupted episodes in smartphone camera recordings, and then detects AF in MNA-free recordings. We found that MNA-corrupted episodes have highly-varying pulse slope, large turning point ratio, or large kurtosis values in smartphone signals compared to MNA-free AF and NSR episodes. We first use these three metrics for MNA discrimination and exclusion. Then, AF is detected in MNA-free signals using our previous algorithm. The capability to discriminate MNAs and AFs separately in smartphone signals increases the specificity of AF detection. To evaluate the performance of the proposed MNA-resilient AF algorithm, 99 subjects, including 88 study participants with AF at baseline and in NSR after electrical cardioversion as well as 11 participants with MNA-corrupted NSR, were recruited. Using iPhone 4S, 5S, and 6S models, we collected 2-minute pulsatile time series from each subject. The clinical results show that the accuracy, sensitivity and specificity of the proposed AF algorithm are 0.97, 0.98, 0.97, respectively, which are higher than those of the previous AF algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.