Photoplethysmography (PPG) is a technique to detect blood volume changes in an optical way. Representative PPG applications are the measurements of oxygen saturation, heart rate, and respiratory rate. However, PPG signals are sensitive to motion and noise artifacts (MNAs) especially when they are obtained from smartphone cameras. Moreover, PPG signals are different among users and each individual’s PPG signal has a unique characteristic. Hence, an effective MNA detection and reduction method for smartphone PPG signals, which adapts itself to each user in a personalized way, is highly demanded. Here, a concept of the probabilistic neural network (PNN) is introduced to be used with the proposed extracted parameters. The signal amplitude, standard deviation of peak to peak time intervals and amplitudes, along with the mean of moving standard deviation, signal slope changes, and the optimal autoregressive (AR) model order are proposed for effective MNA detection. Accordingly, the performance of the proposed personalized algorithm is compared with conventional MNA detection algorithms. As performance metrics, we considered accuracy, sensitivity, and specificity. The results show that the overall performance of the personalized MNA detection is enhanced compared to the generalized algorithm. The average values of the accuracy, sensitivity and specificity of the personalized one are 98.07%, 92.6%, and 99.78%, respectively, while these are 89.92%, 84.21%, and 93.63% for the general one.
Abstract:We hypothesize that our fingertip image-based heart rate detection methods using smartphone reliably detect the heart rhythm and rate of subjects. We propose fingertip curve line movement-based and fingertip image intensity-based detection methods, which both use the movement of successive fingertip images obtained from smartphone cameras. To investigate the performance of the proposed methods, heart rhythm and rate of the proposed methods are compared to those of the conventional method, which is based on average image pixel intensity. Using a smartphone, we collected 120 s pulsatile time series data from each recruited subject. The results show that the proposed fingertip curve line movement-based method detects heart rate with a maximum deviation of 0.0832 Hz and 0.124 Hz using time-and frequency-domain based estimation, respectively, compared to the conventional method. Moreover, another proposed fingertip image intensity-based method detects heart rate with a maximum deviation of 0.125 Hz and 0.03 Hz using time-and frequency-based estimation, respectively.
The introduction of nonlinearities into energy harvesting in order to improve the performance of linear harvesters has attracted a lot of research attention recently. The potential benefits of nonlinear harvesters have been evaluated under sinusoidal or random excitation. In this paper, the performances of electromagnetic energy harvesters with linear and nonlinear springs are investigated under real vibration data. Compared to previous studies, the parameters of linear and nonlinear harvesters used in this paper are more realistic and fair for comparison since they are extracted from existing devices and restricted to similar sizes and configurations. The simulation results showed that the nonlinear harvester did not generate higher power levels than its linear counterpart regardless of the excitation category. Additionally, the effects of nonlinearities were only available under a high level of acceleration. The paper also points out some design concerns when harvesters are subjected to real vibrations.
Investigating the coil–magnet structure plays a significant role in the design process of the electromagnetic energy harvester due to the effect on the harvester’s performance. In this paper, the performance of four different electromagnetic vibration energy harvesters with cylindrical shapes constrained in the same volume were under investigation. The utilized structures are (i) two opposite polarized magnets spaced by a mild steel; (ii) a Halbach array with three magnets and one coil; (iii) a Halbach array with five magnets and one coil; and (iv) a Halbach array with five magnets and three coils. We utilized a completely automatic optimization procedure with the help of an optimization algorithm implemented in Python, supported by simulations in ANSYS Maxwell and MATLAB Simulink to obtain the maximum output power for each configuration. The simulation results show that the Halbach array with three magnets and one coil is the best for configurations with the Halbach array. Additionally, among all configurations, the harvester with two opposing magnets provides the highest output power and volume power density, while the Halbach array with three magnets and one coil provides the highest mass power density. The paper also demonstrates limitations of using the electromagnetic coupling coefficient as a metric for harvester optimization, if the ultimate goal is maximization of output power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.