In this paper, practical stability with respect to a part of the variables of nonlinear stochastic differential equations (SDEs) are studied. We investigate, the global practical uniform asymptotic, the global practical uniform pth moment exponential stability, as well as the global practical uniform exponential stability with respect to a part of the variables based on Lyapunov techniques. We provide also some illustrative examples to show the usefulness of the notion of stability with respect to a part of variables for SDEs.
The approach of Lyapunov functions is one of the most efficient ones for the investigation of the stability of stochastic systems, in particular, of singular stochastic systems. The main objective of the paper is the analysis of the stability of stochastic perturbed singular systems by using Lyapunov techniques under the assumption that the initial conditions are consistent. The uniform exponential stability in mean square and the practical uniform exponential stability in mean square of solutions of stochastic perturbed singular systems based on Lyapunov techniques are investigated. Moreover, we study the problem of stability and stabilization of some classes of stochastic singular systems. Finally, an illustrative example is given to illustrate the effectiveness of the proposed results.
This paper is concerned with the almost sure partial practical stability of stochastic differential equations with general decay rate. We establish some sufficient conditions based upon the construction of appropriate Lyapunov functions. Finally, we provide a numerical example to demonstrate the efficiency of the obtained results.
In this paper, we investigate the problem of stability of time-varying stochastic perturbed singular systems by using Lyapunov techniques under the assumption that the initial conditions are consistent. Sufficient conditions on uniform exponential stability and practical uniform exponential stability in mean square of solutions of stochastic perturbed singular systems are obtained based upon Lyapunov techniques. Furthermore, we study the problem of stability and stabilization of some classes of stochastic singular systems. Eventually, we provide a numerical example to validate the effectiveness of the abstract results of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.