Introduction One of the most common problems of diabetes are diabetic foot ulcers (DFUs). According to National Institute for Health, initial management of DFUs can decrease the complication of limb amputations and can improve the patient’s quality of life. DFU treatment can be optimized with the help of multidisciplinary approach. Based on many studies, control of glucose levels in blood, antioxidant activity, reduction in cytokine levels, re-epithelialization, collagen formation, migration of fibroblasts are major phases involved in managing DFU. Dehydrozingerone (DHZ), has been known for its anti-inflammatory, antioxidant and wound healing properties. Methodology Three months high-fat diet and low dose of streptozotocin-induced type-II diabetic foot ulcer model was used to evaluate the effectiveness of dehydrozingerone. DHZ was given orally to rats for 15 days post wounding. TNF-α, IL-1β and antioxidant parameters like lipid peroxidation, glutathione reductase were estimated. Immunoblotting was done to investigate the effect of DHZ on the expression of ERK, JNK, HSP-27, P38, SIRT-1, NFκB, SMA, VEGF and MMP-9 in skin tissue. Histopathology was performed for analyzing DHZ effect on migration of fibroblasts, formation of epithelium, granulation tissue formation, angiogenesis and collagen formation. Results DHZ decreased the levels of malondialdehyde, TNF-α, IL-1β and increased glutathione levels in wound tissue. Western blotting results suggested that DHZ activated ERK1/2/JNK/p38 signaling, increased expression of HSP-27, SIRT-1, VEGF, SMA thus facilitating the migration and proliferation of fibroblasts, angiogenesis and decreased inflammation. Masson Trichrome & histopathology showed an increase in collagen, epithelial and granulation tissue formation. Conclusion DHZ significantly accelerates the healing of diabetic foot ulcers in high fat diet fed plus low dose streptozotocin induced type-II diabetic Wistar rats. Graphical abstract
This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A need to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.
Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 with severe respiratory failure and organ damage that later appeared as a pandemic disease. Worldwide, people’s mental and physical health and socioeconomic have been affected. Currently, with no promising treatment for COVID-19, the existing anti-viral drugs and vaccines are the only hope to boost the host immune system to reduce morbidity and mortality rate. Unfortunately, several reports show that people who are partially or fully vaccinated are still susceptible to COVID-19 infection. Evidence suggests that COVID-19 immunopathology may include dysregulation of macrophages and monocytes, reduced type 1 interferons (IFN-1), and enhanced cytokine storm that results in hypersecretion of proinflammatory cytokines, capillary leak syndrome, intravascular coagulation, and acute respiratory distress syndrome (ARDS) ultimately leading to the worsening of patient’s condition and death in most cases. The recent use of cell-based therapies such as mesenchymal stem cells (MSCs) for critically ill COVID-19 patients has been authorized by the Food and Drug Administration (FDA) to alleviate cytokine release syndrome. It protects the alveolar epithelial cells by promoting immunomodulatory action and secreting therapeutic exosomes to improve lung function and attenuate respiratory failure. As a result, multiple clinical trials have been registered using MSCs that aim to use various cell sources, and dosages to promote safety and efficacy against COVID-19 infection. In this review, the possibility of using MSCs in COVID-19 treatment and its associated challenges in their use have been briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.