In high-voltage equipment, it is vital to detect any failure in advance. To do this, a determination of the partial discharges occurring at different voltage types as well as at different electrode configurations is essential for observing the oil condition. In this study, an experimental setup consisting of a needle–semi-sphere electrode configuration immersed in mineral oil is prepared for laboratory experiment. In such a way, a non-uniform electric field is created and the leakage currents are monitored from the grounded electrode. A total of six different electrode configurations are analyzed during the tests by the use of hemispheres of different diameters as grounded electrodes and copper and steel pointed (medical) needle high-voltage electrodes. In the experiments, the partial discharges occurring at four different voltage levels between 5.4 and 10.8 kV are measured and recorded. The effect of the different electrode configurations and voltage levels on the harmonic distortion are noted and discussed. It is experimentally confirmed that it is possible to measure the leakage current caused by the partial discharges of the corona type in oil at the different metal points, creating high-voltage electrodes and different electric field distributions based on the proposed non-invasive measurement technique. The studies showed that there is a significant rise of even harmonic components in the leakage current during the increase in the partial discharge intensity with the 5th harmonic as dominant.
Liquid dielectrics are different from each other, but are used to perform the same tasks in high-voltage electrical equipment, especially transformers. In similar conditions, the insulation performance of transformer oils under different types of voltage will provide dielectric resistance. In this study, three different dielectric liquids applied in transformers, namely mineral oil, natural ester and synthetic ester, were tested. Tests under AC and negative DC voltage were performed at electrode gaps of 2.5 mm, 2 mm and 1 mm using disk and VDE type electrodes as per ASTM D1816-84A and ASTM D877-87 standards, respectively. In turn, the impulse voltage tests were performed under an electrode configuration suggested by the IEC 60897 standard. The current data of 500 ms prior to breakdown under AC electrical field stress was decomposed using the empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. These analyses were conducted before the full electrical breakdown. Although synthetic ester has the highest dielectric strength under AC and negative DC electrical field stress, mineral oil has been assessed to be the most resistant liquid dielectric at lightning impulse voltages. In addition, stabilization of mineral oil under AC and negative DC voltage was also seen to be good with the help of calculated standard deviation values. However, synthetic ester has a significant advantage, especially in terms of dielectric performance, over mineral oil in spite of the stability of mineral oil. This indicates that liquid dielectric selection for transformers must be carried out as a combined evaluation of multiple parameters.
Insulation degradation may cause inefficient and faulty operation of transformers. The insulation failures in transformers mostly start with a Partial Discharge (PD) event. For both operational and cost reasons to ensure the best performance and functionality of transformers, early detection of PD events is of great importance. In this paper presents a novel PD detection technique by using a highly sensitive Quantum Well Hall Effect (QWHE) magnetic field sensor and compare the findings with an off-the-shelf silicon magnetic field transducer. The investigation of the QWHE for high voltage engineering problem such as PD detection is given first time in this paper. The aim of the study is to detect PD activity in pressboards immersed in mineral insulation oil experimentally using a new QWHE sensor. The measured experimental data from both sensors are decomposed by Empirical Mode Decomposition (EMD) and Wavelet Decomposition (WD) methods, and PD signals are analyzed comparatively. The results show that QWHE sensors provide more accurate and noise free measurements allowing early and more accurate PD detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.