Cardiovascular diseases (CVDs) are the number one cause of death globally. Coronary artery disease (CAD) is the most common form of CVDs. Abundant research works propose decision support systems for CAD early detection. Most of proposed solutions have their origins in the realm of machine learning and datamining. This paper presents two solutions for CAD prediction. The first solution optimizes a random forest model (RFM) through hyperparameters tuning. The second solution uses a case-based reasoning (CBR) methodology. The CBR solution takes advantage of feature importance to improve the execution time of the retrieve step in the CBR cycle. The experimentations show that the RFM outperformed most recent published models for CAD diagnosis. By reducing the number of attributes, the CBR solution improves the execution time and also performs very well in terms of diagnosis accuracy. The performance of the CBR solution is intended to be enhanced because CBR is a learning methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.