Cardiovascular diseases (CVDs) are the number one cause of death globally. Coronary artery disease (CAD) is the most common form of CVDs. Abundant research works propose decision support systems for CAD early detection. Most of proposed solutions have their origins in the realm of machine learning and datamining. This paper presents two solutions for CAD prediction. The first solution optimizes a random forest model (RFM) through hyperparameters tuning. The second solution uses a case-based reasoning (CBR) methodology. The CBR solution takes advantage of feature importance to improve the execution time of the retrieve step in the CBR cycle. The experimentations show that the RFM outperformed most recent published models for CAD diagnosis. By reducing the number of attributes, the CBR solution improves the execution time and also performs very well in terms of diagnosis accuracy. The performance of the CBR solution is intended to be enhanced because CBR is a learning methodology.
Web services have emerged as a major technology for deploying automated interactions between distributed and heterogeneous applications. The main advantage of Web services composition is the possibility of creating value-added services by combining existing ones to achieve customized tasks. How to combine these services efficiently into an arrangement that is both functionally sound and architecturally realizable is a very challenging topic that has founded a significant research area within computer science. A great deal of recent Web-related research has concentrated on dynamic Web service composition. Most of proposed models for dynamic composition use semantic descriptions of Web services through the construction of domain ontology. In this paper, we present our approach to dynamically produce composite services. It is based on the use of two Artificial Intelligence (AI) techniques: Case-Based Reasoning (CBR) and AI planning. Our motivating scenario concerns a national system for the monitoring of childhood immunization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.