Abstract. In this study, styrene butadiene rubber (SBR) was devulcanized using microwave irradiation. In particular, effect of ionic liquid (IL), pyrrolidinium hydrogen sulfate [Pyrr] [HSO 4 ], on the devulcanization performance was studied. It was observed that the evolution of the temperature reached by rubber powder exposed to microwave irradiation for different energy values was favored by the presence of ionic liquid [Pyrr] [HSO 4 ] significantly over the whole range of the microwave energy values. Beyond the threshold point of 220 Wh/kg, the soluble fraction after devulcanization sharply increased with increasing devulcanization microwave energy. For the powder mixed with [Pyrr][HSO 4 ], the increase was more significant. Furthermore, the crosslink density was observed to decrease slowly with the microwave energy up to 220 Wh/kg, beyond which the crosslink density decreased significantly for the rubber impregnated with IL. For the rubber with IL, significant and continuous increase in T g with microwave energy values was observed in comparison with the SBR where no change in transition temperature was observed. Mechanical shearing of rubber gums in the two-roll mill favored the devulcanization process, which indicated that the combination of mechanical loading with microwave energy and IL is an efficient procedure allowing an optimal devulcanization of rubbers.
Carbazole-based HTMs with fused benzene rings as substituents show a power conversion efficiency exceeding 17% (13.7% for Spiro-OMeTAD under the same conditions).
Polyaniline (PANI) was synthesized using oxidative polymerization in a mixture of water with pyrrolidinium hydrogen sulfate [Pyrr][HSO4], which is a protic ionic liquid PIL. The obtained PANI (PANI/PIL) was compared with conventional PANI (PANI/HCl and PANI/HSO4) in terms of their morphological, structural, and storage properties. The results demonstrate that the addition of this PIL to a polymerization medium leads to a fiber-like morphology, instead of a spherical-like morphology, of PANI/HSO4 or an agglomerated morphology of PANI/HCl. In addition, PAN/PIL exhibits an improvement of the charge transfer kinetic and storage capability in H2SO4 1 mol·L−1, compared to PANI/HCl. The combination of PANI/PIL and graphene oxide (GO), on the other hand, was investigated by optimizing the PANI/GO weight ratio to achieve the nanocomposite material with the best performance. Our results indicate that the PANI/PIL/GO containing 16 wt% of GO material exhibits a high performance and stability (223 F·g−1 at 10 A·g−1 in H2SO4 1 mol·L−1, 4.9 Wh·Kg−1, and 3700 W·Kg−1 @ 10 A·g−1). The obtained results highlight the beneficial role of PIL in building PANI and PANI/GO nanocomposites with excellent performances for supercapacitor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.