and goncha@uevora.pt Dedicated to Panos M. Pardalos in honor of his 60th birthday Summary. We study well-posedness of some mathematical programming problem depending on a parameter that generalizes in a certain sense the metric projection onto a closed nonconvex set. We are interested in regularity of the set of minimizers as well as of the value function, which can be seen, on one hand, as the viscosity solution to a Hamilton-Jacobi equation, while, on the other, as the minimal time in some related optimal time control problem. The regularity includes both the Fréchet differentiability of the value function and the Hölder continuity of its (Fréchet) gradient.
Part 4: Stabilization, Feedback, and Model Predictive ControlInternational audienceContinuing research in [13] and [14] on well-posedness of the optimal time control problem with a constant convex dynamics in a Hilbert space we adapt one of the regularity conditions obtained there to a slightly more general problem, where nonaffine additive term appears. We prove existence and uniqueness of a minimizer in this problem as well as continuous differentiability of the value function, which can be seen as the viscosity solution to a Hamilton-Jacobi equation, near the boundary
For a compact convex set F ⊂ R n , with the origin in its interior, we present a formula to compute the curvature at a fixed point on its boundary, in the direction of any tangent vector. This formula is equivalent to the existing ones, but it is easier to apply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.