Based on the assumption that the prolactin receptor (PRLR) is activated by PRL-induced sequential dimerization, potential human PRL (hPRL) antagonists were designed that sterically interfere with binding site 2. We previously reported the unexpected agonistic properties of these hPRL analogs in the rat Nb2 bioassay (Goffin, V., Struman, I., Mainfroid, V., Kinet, S., and Martial, J. A. (1994) J. Biol. Chem. 269, 32598 -32606). In order to investigate whether such paradoxical agonistic behavior might result from characteristic features of the Nb2 assay (e.g. species specificity), we transfected in the same cell system the cDNA encoding the PRLR from rat or human species along with reporter genes containing PRL-responsive DNA sequences. We characterized the agonistic, self-antagonistic and/or antagonistic effects of wild type rat PRL, wild type hPRL, and three hPRL analogs, mutated either at binding site 1 or at binding site 2. Our results clearly show that the agonistic/antagonistic properties of PRLs are species-specific. We thus propose different models of receptor activation, depending on the relative affinities of each hormonal binding site, which is directed by species specificity. Finally, this is the first report of hPRL binding site 2 analogs showing antagonistic properties on human and, to a lesser extent, rat receptors.
Prolactin (PRL) interacts with a single chain prolactin-specific receptor of the cytokine receptor superfamily. PRL triggers activation of Jak2 kinase which phosphorylates the PRL receptor itself and the mammary gland factor, Stat5, a member of the family of signal transducers and activators of transcription (Stat). Selection of the particular substrate (Stat 5), that is characterized by transcriptional responses to PRL, has been shown to be determined by specific tyrosine-based motifs common to many cytokine receptors. PRL-induced activation of Stat5 was abolished in 293 fibroblasts expressing PRL receptor mutants lacking all intracellular tyrosines. We have identified tyrosine phosphorylation sites of the PRL receptor (residues 580, 479, and 473) necessary for maximal Stat5 activation and subsequent Stat5-dependent gene transcription. Moreover, we have shown that none of the tyrosine residues of the PRL receptor are implicated in activation of Jak2. This study demonstrates that only specific tyrosines in the PRL receptor are phosphorylated and are in fact utilized differentially for Stat5-mediated transcriptional signaling.
Epithelial cells from the lens equator differentiate into elongated fiber cells. In the final steps of differentiation, the chromatin appears quite condensed and chromatin breakdown into nucleosomes occurs. DNA breaks due to an endodeoxyribonuclease activity corresponding to at least two polypeptides of 30 and 40 kDa have been identified. To identify the nature and the developmental appearance of initial breaks, nick translation reaction was followed both biochemically and in situ in fiber and epithelial cells from chick embryonic lenses. There is no accumulation of single-strand breaks (SSB) with 3'OH ends in lens fiber cells during embryonic development. Such damage can be increased in these cells by treatment with DNAase I indicating the absence of an inhibitor of the nick translation reaction in fiber cells. However, there are indications of the presence of DNA breaks with blocked termini when the phosphatase activity of nuclease P1 is used. The presence of breaks is also indicated by the large amounts of (ADP-ribose)n found in lens fibers particularly at 11 days of embryonic development (E11) as ADP-ribosyl transferase binds to and is activated by DNA strand breaks. Incubation of lens cells in vitro, which causes nucleosomal fragmentation only in fiber cells, produces SSB with 3'OH ends in both epithelia and fibers. Incubation for short periods, observed in experiments in situ, induces SSB first in the central fiber nuclei, which are late in differentiation. This may indicate that these SSB play a physiological role. Long incubations produce larger numbers of SSB in epithelia than fibers. The SSB in the fibers may have been converted into double-strand breaks (D SB), seen as nucleosomal fragments, and therefore no longer act as substrates for nick translation. The nuclease activity responsible for SSB production is independent of divalent cations and could be implicated in lens terminal differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.