The global burden of infections and the rapid spread of viral diseases show the need for new approaches in the prevention and development of effective therapies. To this end, we aimed to explore novel inhibitor compounds that can stop replication or decrease the viral load of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is currently no approved treatment. Besides using the angiotensin-converting enzyme (ACE2) receptor as a main gate, the CoV-2 can bind to the glucose-regulating protein 78 (GRP78) receptor to get into the cells to start an infection. Here, we report potential inhibitors comprising small molecules and peptides that could interfere with the interaction of SARS-CoV-2 and its target cells by blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. These inhibitors were discovered through an approach of in silico screening of available databases of bioactive peptides and polyphenolic compounds and the analysis of their docking modes. This process led to the selection of 9 compounds with optimal binding affinities to the target sites. The peptides (satpdb18674, satpdb18446, satpdb12488, satpdb14438, and satpdb28899) act on regions III and IV of the viral Spike protein and on its binding sites in GRP78. However, 4 polyphenols such as epigallocatechin gallate (EGCG), homoeriodictyol, isorhamnetin, and curcumin interact, in addition to the Spike protein and its binding sites in GRP78, with the ATPase domain of GRP78. Our work demonstrates that there are at least 2 approaches to block the spread of SARS-CoV-2 by preventing its fusion with the host cells via GRP78.
The COVID-19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. Understanding and monitoring the genetic evolution of the virus, its geographical characteristics, and its stability are particularly important for controlling the spread of the disease and especially for the development of a universal vaccine covering all circulating strains. From this perspective, we analyzed 30,983 complete SARS-CoV-2 genomes from 79 countries located in the six continents and collected from 24 December 2019, to 13 May 2020, according to the GISAID database. Our analysis revealed the presence of 3206 variant sites, with a uniform distribution of mutation types in different geographic areas. Remarkably, a low frequency of recurrent mutations has been observed; only 169 mutations (5.27%) had a prevalence greater than 1% of genomes. Nevertheless, fourteen non-synonymous hotspot mutations (>10%) have been identified at different locations along the viral genome; eight in ORF1ab polyprotein (in nsp2, nsp3, transmembrane domain, RdRp, helicase, exonuclease, and endoribonuclease), three in nucleocapsid protein, and one in each of three proteins: Spike, ORF3a, and ORF8. Moreover, 36 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human ACE2 receptor. These results along with intra-genomic divergence of SARS-CoV-2 could indicate that unlike the influenza virus or HIV viruses, SARS-CoV-2 has a low mutation rate which makes the development of an effective global vaccine very likely.
The Coronavirus disease 19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. To date, the SARS-CoV-2 virus has infected more than 8 million people worldwide and killed over 5% of them. Efforts are being made all over the world to control the spread of the disease and most importantly to develop a vaccine. Understanding the genetic evolution of the virus, its geographic characteristics and stability is particularly important for developing a universal vaccine covering all circulating strains of SARS-CoV-2 and for predicting its efficacy. In this perspective, we analyzed the sequences of 30,983 complete genomes from 80 countries located in six geographical zones (Africa, Asia, Europe, North & South America, and Oceania) isolated from December 24, 2019 to May 13, 2020, and compared them to the reference genome.Our in-depth analysis revealed the presence of 3,206 variant sites compared to the reference Wuhan-Hu-1 genome, with a distribution that is largely uniform over all continents. Remarkably, a low frequency of recurrent mutations was observed; only 182 mutations (5.67%) had a prevalence greater than 1%. Nevertheless, fourteen hotspot mutations (> 10%) were identified at different locations, seven at the ORF1ab gene (in regions coding for nsp2, nsp3, nsp6, nsp12, nsp13, nsp14 and nsp15), three in the nucleocapsid protein, one in the spike protein, one in orf3a, and one in orf8. Moreover, 35 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human receptor ACE2.These results along with the phylogenetic analysis demonstrate that the virus does not have a significant divergence at the protein level compared to the reference both among and within different geographical areas. Unlike the influenza virus or HIV viruses, the slow rate of mutation of SARS-CoV-2 makes the potential of developing an effective global vaccine very likely.
The abnormal activation of AKT/mTOR signaling pathway and overexpression of LMTK3, are the main factors involved in the generation of drug resistance. Therefore, the use of computer-aided drug design in the inhibitors discovery offers an advantage to provide new candidates for the treatment of this resistance. We realised the virtual screening and molecular docking of AKT1 and LMTK3 proteins by the Dockblaster server. In addition, with abundance of candidates under development for AKT1 kinase, we have also conducted a Quantitative Structure-Activity Relationship (QSAR) study based on these compounds, in order to design more active compounds and predict their activity for development of a new inhibitor of AKT1. QSAR tests were performed for AKT1 using the Partial Least Squares method with a correlation coefficient of R2=0.8062 and a cross-validation of q2=0.6995. This test has selected five compounds as competitive inhibitors-AKT1-ATP with a better biological activities. In parallel the molecular screening has selected five other compounds as competitive ATP-inhibitors of LMTK3. One of them is a common inhibitor with AKT1, and it is marketed as a moderate to severe pain therapy. The ADME predictions confirmed the inhibitors pharmacological activity of these compounds for potential consideration as drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.