Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Abstract:There is an increasing interest in enzymes that catalyze the hydroxylation of naphthalene under mild conditions and with minimal requirements. To address this challenge, an extracellular fungal aromatic peroxygenase with mono(per)oxygenase activity was engineered to selectively convert naphthalene into 1-naphthol. Mutant libraries constructed by random mutagenesis and DNA recombination were screened for peroxygenase activity on naphthalene while quenching the undesired peroxidative activity on 1-naphthol (one-electron oxidation). The resulting double mutant (G241D-R257K) of this process was characterized biochemically and computationally. The conformational changes produced by directed evolution improved the substrate´s catalytic position. Powered exclusively by catalytic concentrations of H2O2, this soluble and stable biocatalyst has total turnover numbers of 50,000, with high regioselectivity (97%) and reduced peroxidative activity.
Fungal high-redox-potential laccases (HRPLs) are multicopper oxidases with a relaxed substrate specificity that is highly dependent on their binding affinity and redox potential of the T1Cu site (E T1). In this study, we combined computational design with directed evolution to tailor an HRPL variant with increased E T1 and activity toward high-redox-potential mediators as well as enhanced stability. Laccase mutant libraries were screened in vitro using synthetic high-redox-potential mediators with different oxidation routes and chemical natures, while computer-aided evolution experiments were run in parallel to guide benchtop mutagenesis, without compromising protein stability. Through this strategy, the E T1 of the evolved HRPL increased from 740 to 790 mV, with a concomitant improvement in thermal and acidic pH stability. The kinetic constants for high-redox-potential mediators were markedly improved and were then successfully tested within laccase mediator systems (LMSs). Two hydrophobic substitutions surrounding the T1Cu site appeared to underlie these effects, and they were rationalized at the atomic level. Together, this study represents a proof-of-concept of the joint elevation of the E T1, redox mediator activity, and stability in an HRPL, making this versatile biocatalyst a promising candidate for future LMS applications and for the development of bioelectrochemical devices.
The hydrolysis reaction mechanisms of carboplatin, a second-generation anticancer drug, have been explored by combining density functional theory (DFT) with the conductor-like dielectric continuum model (CPCM) approach. The decomposition of carboplatin in water is expected to take place through a biphasic mechanism with a ring-opening process followed by the loss of the malonato ligand. We have investigated this reaction in water and acid conditions and established that the number of protons present in the malonato ligand has a direct effect on the energetics of this system. Close observation of the optimised structures revealed a necessary systematic water molecule in the vicinity of the amino groups of carboplatin. For this reason we have also investigated this reaction with an explicit water molecule. From the computed potential-energy surfaces it is established that the water hydrolysis takes place with an activation barrier of 30 kcal mol(-1), confirming the very slow reaction observed experimentally. The decomposition of carboplatin upon acidification was also investigated and we have computed a 21 kcal mol(-1) barrier to be overcome (experimental value 23 kcal mol(-1)). We have also established that the rate-limiting process is the first hydration, and ascertained the importance of a water molecule close to the two amine groups in lowering the activation barriers for the ring-opening reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.