Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Essential oils are hydrophobic liquids produced as secondary metabolites by specialized secretory tissues in the leaves, seeds, flowers, bark and wood of the plant, and they play an important ecological role in plants. Essential oils have been used in various traditional healing systems due to their pharmaceutical properties, and are reported to be a suitable replacement for chemical and synthetic drugs that come with adverse side effects. Thus, currently, various plant sources for essential oil production have been explored. Coriander essential oil, obtained from the leaf and seed oil of Coriandrum sativum, has been reported to have various biological activities. Apart from its application in food preservation, the oil has many pharmacological properties, including allelopathic properties. The present review discusses the phytochemical composition of the seed and leaf oil of coriander and the variation of the essential oil across various germplasms, accessions, at different growth stages and across various regions. Furthermore, the study explores various extraction and quantification methods for coriander essential oils. The study also provides detailed information on various pharmacological properties of essential oils, such as antimicrobial, anthelmintic, insecticidal, allelopathic, antioxidant, antidiabetic, anticonvulsive, antidepressant, and hepatoprotective properties, as well as playing a major role in maintaining good digestive health. Coriander essential oil is one of the most promising alternatives in the food and pharmaceutical industries.
Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.
Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system’s response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages’ contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
Bioactive compounds can be derived from cereal grains and their components such as rice bran. These bioactive compounds have a potency to promote health. A pentapeptide with a sequence of amino acids Glu-Gln-Arg-Pro-Arg (EQRPR) prepared from heat stablized defatted rice bran (HDRB) has demonstrated multi-site anti-cancer properties in human cell lines. Fruit juces can be used as vehicles to incorporate the pentapeptide as a nutraceutical. To address the stability of the pentapeptide in the beverage and to prevent possible interactions with other components, nano-encapsulation with poly (lactic-co-glycolic acid) (PLGA) was used to deliver the bioactive ingredient. The nano-encapsulated pentapeptide (concentrations: 200/400/600 µg/mL) in the apple juice (model system) showed significant stability with no degradation for 2 months based on the high performance liquid chromatography analysis. The nanoparticles were uniform and stable with an effective diameter ranging between 82 and 83 nm and the results also indicated that there were no significant changes in the size over a storage period of 60 days. There was no microbial growth observed in the prepared apple juice samples. The un-encapsulated pentapeptide incorporated in the apple juice showed significant degradation after 7 days of storage. The PLGA nanoparticles showed a remarkable effect in protecting and stabilizing the bioactive compounds (pentapeptide) during the storage period at 4°C. The PLGA nanoparticles can thus be a promising carrier for the bioactive pentapeptide when incorporated into a juice medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.