We present a methodology for automatic corrosion detection in digital images of carbon steel storage tanks and pipelines from a petroleum refinery. The database consists of optical digital images taken from equipments exposed to marine atmosphere during their operational life. This new approach focuses on color and texture descriptors to accomplish corroded and noncorroded surface area discrimination. The performance of the proposed corrosion descriptors is evaluated by using Fisher linear discriminant analysis (FLDA). This approach presents two main advantages: No refinery stoppages are required and potential-related catastrophes can be prevented.
Introduction: The World Health Organization estimates that by 2030 the Chronic Obstructive Pulmonary Disease (COPD) will be the third leading cause of death worldwide. Computerized Tomography (CT) images of lungs comprise a number of structures that are relevant for pulmonary disease diagnosis and analysis. Methods: In this paper, we employ the Adaptive Crisp Active Contour Models (ACACM) for lung structure segmentation. And we propose a novel method for lung disease detection based on feature extraction of ACACM segmented images within the cooccurrence statistics framework. The spatial interdependence matrix (SIM) synthesizes the structural information of lung image structures in terms of three attributes. Finally, we perform a classifi cation experiment on this set of attributes to discriminate two types of lung diseases and health lungs. We evaluate the discrimination ability of the proposed lung image descriptors using an extreme learning machine neural network (ELMNN) comprising 4-10 neurons in the hidden layer and 3 neurons in the output layer to map each pulmonary condition. This network was trained and validated by applying a holdout procedure. Results:The experimental results achieved 96% accuracy demonstrating the effectiveness of the proposed method on identifying normal lungs and diseases as COPD and fi brosis. Conclusion: Our results lead to conclude that the method is suitable to integrate clinical decision support systems for pulmonary screening and diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.