This paper presents an electricity consumer characterization framework based on a knowledge discovery in databases (KDD) procedure, supported by data mining (DM) techniques, applied on the different stages of the process. The core of this framework is a data mining model based on a combination of unsupervised and supervised learning techniques. Two main modules compose this framework: the load profiling module and the classification module. The load profiling module creates a set of consumer classes using a clustering operation and the representative load profiles for each class. The classification module uses this knowledge to build a classification model able to assign different consumers to the existing classes. The quality of this framework is illustrated with a case study concerning a real database of LV consumers from the Portuguese distribution company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.