Androgen receptor (AR) signaling reprograms cellular metabolism to support prostate cancer (PCa) growth and survival. Another key regulator of cellular metabolism is mTOR, a kinase found in diverse protein complexes and cellular localizations, including the nucleus. However, whether nuclear mTOR plays a role in PCa progression and participates in direct transcriptional cross-talk with the AR is unknown. Here, via the intersection of gene expression, genomic, and metabolic studies, we reveal the existence of a nuclear mTOR-AR transcriptional axis integral to the metabolic rewiring of PCa cells. Androgens reprogram mTOR-chromatin associations in an AR-dependent manner in which activation of mTOR-dependent metabolic gene networks is essential for androgeninduced aerobic glycolysis and mitochondrial respiration. In models of castration-resistant PCa cells, mTOR was capable of transcriptionally regulating metabolic gene programs in the absence of androgens, highlighting a potential novel castration resistance mechanism to sustain cell metabolism even without a functional AR. Remarkably, we demonstrate that increased mTOR nuclear localization is indicative of poor prognosis in patients, with the highest levels detected in castration-resistant PCa tumors and metastases. Identification of a functional mTOR targeted multigene signature robustly discriminates between normal prostate tissues, primary tumors, and hormone refractory metastatic samples but is also predictive of cancer recurrence. This study thus underscores a paradigm shift from AR to nuclear mTOR as being the master transcriptional regulator of metabolism in PCa.
BTA inhibits the growth of LNCaP human PCa cells in vitro and in vivo. These findings indicate that intra-prostatic BTA injections to treat BPH are unlikely to promote the growth of co-existing infra-clinical PCa foci in men. A potential inhibitory effect of BTA on the growth of human PCa should be further studied.
Androgen withdrawal is the most effective form of systemic therapy for men with advanced prostate cancer. Unfortunately, androgen-independent progression is inevitable, and the development of hormone-refractory disease and death occurs within 2 to 3 years in most men. The understanding of molecular mechanisms promoting the growth of androgenindependent prostate cancer cells is essential for the rational design of agents to treat advanced disease. We previously reported that Fer tyrosine kinase level correlates with the development of prostate cancer and aggressiveness of prostate cancer cell lines. Moreover, knocking down Fer expression interferes with prostate cancer cell growth in vitro. However, the mechanism by which Fer mediates prostate cancer progression remains elusive. We present here that Fer and phospho-Y705 signal transducer and activator of transcription 3 (STAT3) are barely detectable in human benign prostate tissues but constitutively expressed in the cytoplasm and nucleus of the same subsets of tumor cells in human prostate cancer. The interaction between STAT3 and Fer was observed in all prostate cancer cell lines tested, and this interaction is mediated via the Fer Src homology 2 domain and modulated by interleukin-6 (IL-6). Moreover, IL-6 triggered a rapid formation of Fer/gp130 and Fer/STAT3 complexes in a time-dependent manner and consistent with changes in Fer and STAT3 phosphorylation and cytoplasmic/nuclear distribution. The modulation of Fer expression/activation resulted in inhibitory or stimulatory effects on STAT3 phosphorylation, nuclear translocation, and transcriptional activation. These effects translated in IL-6 -mediated PC-3 cell growth. Taken together, these results support an important function of Fer in prostate
We confirmed the vascular effect of endourethral WST11 vascular targeted photodynamic therapy. To our knowledge we report for the first time that the resulting periurethral necrosis led to significant, sustained widening of the prostatic urethra, accompanied by long-term improvement in urodynamic parameters. These findings support future clinical applications of this minimally invasive approach to benign prostatic hyperplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.