Background: Alzheimer’s disease (AD) is a neurodegenerative disorder that is associated with abnormal cognition. AD is aided in its initiation and progression by hereditary and environmental factors. Aluminum (Al) is a neurotoxic agent that causes oxidative stress, which is linked to AD progression. Additionally, Nrf2/HO-1, APOE4/LRP1, Wnt3/β-catenin, and TLR4/NLRP3 are the main signaling pathways involved in AD pathogenesis. Several phytochemicals are promising options in delaying AD evolution. Objectives: This study aimed at studying the neuroprotective effects of some phytochemicals as morin (MOR), thymol (TML), and thymoquinone (TMQ) on physical and mental activities (PhM) in Al chloride (AlCl3)-induced AD rat model. Another objective was to determine the specificity of phytochemicals to AD signaling pathways using molecular docking. Methods: Eighty male Dawley rats were divided into eight groups. Each group received: saline (control group), AlCl3, (ALAD), PhM, either alone or with a combination of MOR, TML, and/or TMQ for five weeks. Animals were then subjected to behavioral evaluation. Brain tissues were used for histopathological and biochemical analyses to determine the extent of neurodegeneration. The effect of phytochemicals on AlCl3-induced oxidative stress and the main signaling pathways involved in AD progression were also investigated. Results: AlCl3 caused a decline in spatial learning and memory, as well as histopathological changes in the brains of rats. Phytochemicals combined with PhM restored antioxidant activities, increased HO-1 and Nrf2 levels, blocked inflammasome activation, apoptosis, TLR4 expression, amyloide-β generation, and tau hyperphophorylation. They also brought ApoE4 and LRP1 levels back to normal and regulated Wnt3/β-catenin/GSK3β signaling pathway. Conclusions: The use of phytochemicals with PhM is a promising strategy for reducing AD by modulating Nrf2/HO-1, TLR4/NLRP3, APOE4/LRP1, and Wnt3/β-catenin/GSK-3β signaling pathways.
In the recent few decades, there was a growth in the field of radioactive medicinal agents called radiopharmaceuticals. Radiopharmaceuticals are consisting of radioactive materials called radioisotopes. Radiopharmaceuticals were recently used in both therapeutic and diagnostic purposes. More than 100 radioactive substances are used in nuclear medicine. According to the decay of radioactive substances, there are three types of radioactive decays, alpha particles, beta particles, and gamma radiations. Alpha particles consist of two protons and two neutrons with large mass and charge so it has no penetration power into the skin and has a destructive effect. Beta particles have less charge and less mass so, they can penetrate the tissue and have a less destructive effect than alpha particles and can be used in therapy. Gamma radiations have no mass or charge so they can penetrate the deep tissue of organs so used in diagnosis by imaging using a gamma camera. The radiopharmaceuticals were established in the diagnostic purpose and treatment of several diseases as thyroid gland cancer, hyperthyroidism, bone pain metastasis, kidney dysfunction, and myocardial and cerebral perfusion. The radioactive substance can also be used in the sterilization of thermo-labile substances as syringes, catheters, vitamins, hormones, and surgical dressing. The field of nuclear medicine has several advantages as localization of tumors, safe diagnosis, no accumulation of radiation, and high therapeutic efficacy. Nowadays, the branch of nuclear pharmacy is directed to introduce new radioactive pharmaceutical agents which will be important and effective in the treatment of cancer. The growth in the field of radiopharmaceuticals is important to help millions of patients suffering from tumors all over the world. The data of this review were collected by searching in Google Scholar and PubMed using the following keywords.
Background: Chemotherapy induced nausea and vomiting are the main undesired side effect that distress around 70 % to 80% of cancer patients. Ginger is often advocated as beneficial for nausea and vomiting, whether the herb is truly efficacious for this condition or not it is still a matter of debate. Objective: This scoping review is conducted to assess the effect of ginger usage on nausea and vomiting induced by chemotherapy amongst adult patients with cancer.Methodology: Databases searched include MEDLINE, CINHALE, PubMed and Google scholar for related articles between 2012 to 2019 was performed. After extensive review,188 studies were retrieved from the databases and only 15 studies found eligible according to applied inclusion and exclusion criteria. (14 randomized controlled trails, 1 pilot study) with a total of 1974 patients with different cancer types receiving emetogenic chemotherapy. Results:The majority of available evidence demonstrates that ginger is an effective, inexpensive and safe treatment for nausea and vomiting. Conclusion:Ginger supplementation can be potentially efficient effects on the patients who receives chemotherapy-induced nausea and vomiting. The results of this scoping review provide significant suggestions for further research using standardized ginger products and reflective larger sample sizes to confirm the efficacy of ginger extract supplement and optimal dosing regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.