Takayasu arteritis is a rare inflammatory disease of large arteries. The etiology of Takayasu arteritis remains poorly understood, but genetic contribution to the disease pathogenesis is supported by the genetic association with HLA-B*52. We genotyped ~200,000 genetic variants in two ethnically divergent Takayasu arteritis cohorts from Turkey and North America by using a custom-designed genotyping platform (Immunochip). Additional genetic variants and the classical HLA alleles were imputed and analyzed. We identified and confirmed two independent susceptibility loci within the HLA region (r(2) < 0.2): HLA-B/MICA (rs12524487, OR = 3.29, p = 5.57 × 10(-16)) and HLA-DQB1/HLA-DRB1 (rs113452171, OR = 2.34, p = 3.74 × 10(-9); and rs189754752, OR = 2.47, p = 4.22 × 10(-9)). In addition, we identified and confirmed a genetic association between Takayasu arteritis and the FCGR2A/FCGR3A locus on chromosome 1 (rs10919543, OR = 1.81, p = 5.89 × 10(-12)). The risk allele in this locus results in increased mRNA expression of FCGR2A. We also established the genetic association between IL12B and Takayasu arteritis (rs56167332, OR = 1.54, p = 2.18 × 10(-8)).
Objective
Takayasu’s arteritis is a rare large vessel vasculitis with incompletely understood etiology. We performed the first unbiased genome-wide association study (GWAS) in Takayasu’s arteritis.
Methods
Two independent Takayasu’s arteritis cohorts from Turkey and North America were included in our study. The Turkish cohort consisted of 559 patients and 489 controls, and the North American cohort consisted of 134 European-derived patients and 1,047 controls. Genotyping was performed using the Omni1-Quad and Omni2.5 genotyping arrays. Genotyping data were subjected to rigorous quality control measures and subsequently analyzed to discover genetic susceptibility loci for Takayasu’s arteritis.
Results
We identified genetic susceptibility loci for Takayasu’s arteritis with a genome-wide level of significance in IL6 (rs2069837, OR= 2.07, P= 6.70×10−9), RPS9/LILRB3 (rs11666543, OR= 1.65, P= 2.34×10−8), and an intergenic locus on chromosome 21q22 (rs2836878, OR= 1.79, P= 3.62×10−10). The genetic susceptibility locus in RPS9/LILRB3 is located within the leukocyte receptor complex (LRC) gene cluster on chromosome 19q13.4, and the disease risk variant in this locus correlates with reduced expression of multiple genes including the inhibitory leukocyte immunoglobulin-like receptor gene LILRB3 (P= 2.29×10−8). In addition, we identified candidate susceptibility genes with suggestive levels of association (P <1×10−5) including PCSK5, LILRA3, PPM1G/NRBP1, and PTK2B in Takayasu’s arteritis.
Conclusion
This study identified novel genetic susceptibility loci for Takayasu’s arteritis and uncovered potentially important aspects in the pathophysiology of this form of vasculitis.
Th1/Th17-type T-cell responses are upregulated in Behcet’s disease (BD). However, signaling pathways associated with this aberrant immune response are not clarified. Whole-genome microarray profiling was performed with human U133 (Plus 2.0) chips using mRNA of isolated CD14+ monocytes and CD4+ T-cells from PBMC in patients with BD (n=9) and healthy controls (HC) (n=9). Flow cytometric analysis of unstimulated (US) and stimulated (PHA) STAT3 and pSTAT3 expressions of PBMCs were also analysed (BD and HC, both n=26). JAK1 was observed to be upregulated in both CD14+ monocytes (1.95 fold) and CD4+ T-lymphocytes (1.40 fold) of BD patients. Using canonical pathway enrichment analysis, JAK/STAT signaling was identified as activated in both CD14+ monocytes (p= 9.55E-03) and in CD4+ lymphocytes (p= 8.13E-04) in BD. Interferon signaling was also prominent among upregulated genes in CD14+ monocytes (p= 5.62E-05). Glucocorticoid receptor signaling and IL-6 signaling were among the most enriched pathways in differentially expressed genes in CD14+ monocytes (p= 2.45E-09, and 1.00E-06, respectively). Basal unstimulated total STAT3 expression was significantly higher in BD (1.2 vs 3.45, p<0.05). The JAK1/STAT3 signaling pathway is activated in BD, possibly through the activation of Th1/Th17-type cytokines such as IL-2, IFNγ, IL-6, IL-17 and IL-23.
The activity of PON and ARE were significantly decreased, and oxidative stress was increased in patients with SH. Lower activities of these 2 biomarkers indicate increased oxidative damage in SH. Atherosclerosis in SH can be attributed to increased oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.