Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Today, the emergence of antibiotic resistance in pathogenic bacteria is considered an important problem for society. Excessive consumption of antibiotics, long‐term treatments, and inappropriate prescriptions continually increase the severity of the problem. Improving antibiotic stewardship requires improved diagnostic testing, and, therefore, in vitro antibiotic susceptibility testing is becoming increasingly important. This research details the development of an antibiotic susceptibility test for Mycobacterium smegmatis using streptomycin as antibiotics. This strain was selected because it is a member of the slow growing Mycobacterium genus and serves as a useful surrogate organism for M. tuberculosis. A commercially available and low‐cost screen‐printed gold electrode in combination with a specifically developed nucleic acid probe sequence for the 16SrRNA region of the mycobacterial genome was employed to monitor M. smegmatis nucleic acid sequences using the techniques of square‐wave voltammetry and electrochemical impedance spectroscopy. The results show that it was possible to detect M. smegmatis sequences and distinguish antibiotic‐treated cells from untreated cells with a label‐free molecular detection. As a result, the in vitro antibiotic susceptibility test revealed that M. smegmatis showed sensitivity to streptomycin after a 24‐H incubation, with the developed protocol representing a potential approach to determining antibiotic susceptibility more quickly and economically than current methods.
Among the thermoplastic elastomers that play important roles in the polymer industry due to their superior properties, styrene‐based species and polyurethane block copolymers are of great interest. Poly(styrene‐ethylene‐butadiene‐styrene) (SEBS) as a triblock copolymer seems to have the potential to meet many demands in different applications due to various industrial requirements where durability, biocompatibility, breaking elongation, and interfacial adhesion are important. In this study, the SEBS triblock copolymer was functionalized with natural (Satureja hortensis, SH) and synthetic (nanopowder, TiO2) agents to obtain composite nanofibers by electrospinning and electrospraying methods for use in biomedical and water filtration applications. The results were compared with thermoplastic polyurethane (TPU) composite nanofibers, which are commonly used in these fields. Here, functionalized SEBS nanofibers exhibited antibacterial effect while at the same time improving cell viability. In addition, because of successful water filtration by using the SEBS composite nanofibers, the material may have a good potential to be used comparably to TPU for the application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.