Surgical repair in Behcet ECAAs should be performed with special precautions in order to prevent anastomotic pseudoaneurysm formation. Ligation can be performed when the anatomical and/or pathological circumstances are not favourable, provided that the stump pressure is adequate to maintain cerebral perfusion.
Background
The angiotensin-converting enzyme-2 (ACE2) is recognized to be the fundamental receptor of severe acute respiratory syndrome coronavirus-2 (SARS-CoV2), responsible for the worldwide Coronavirus Disease-2019 (COVID-19) epidemic. However, genetic differences between people besides racial considerations and their relation to disease susceptibility are still not fully elucidated.
Main body
To uncover the role of ACE2 in COVID-19 infection, we reviewed the published studies that explore the association of COVID-19 with the functional characteristics of ACE2 and its genetic variations. Notably, emerging studies tried to determine whether the ACE2 variants and/or expression could be associated with SARS-CoV/SARS-CoV2 have conflicting results. Some researchers investigated the potential of “population-specific” ACE2 genetic variations to impact the SARS-CoV2 vulnerability and suggested no ethnicity enrichment for ACE2 polymorphisms that could influence SARS-CoV2 S-protein binding. At the same time, some studies use data mining to predict several ACE2 variants that could enhance or decline susceptibility to SARS-CoV. On the other hand, fewer studies revealed an association of ACE2 expression with COVID-19 outcome reporting higher expression levels of ACE2 in East Asians.
Conclusions
ACE2 gene variants and expression may modify the deleterious consequences of SARS-CoV2 to the host cells. It is worth noting that apart from the differences in gene expression and the genetic variations of ACE2, many other environmental and/or genetic factors could modify the disease outcome, including the genes for the innate and the adaptive immune response.
Acute lymphoblastic leukemia (ALL) is a common cancer affecting children worldwide. The development of ALL is driven by several genes, some of which can be targeted for treatment by inhibiting gene fusions. PAX5 is frequently mutated in ALL and is involved in chromosomal rearrangements and translocations. Mutations in PAX5 interact with other genes, such as ETV6 and FOXP1, which influence B-cell development. PAX5/ETV6 has been observed in both B-ALL patients and a mouse model. The interaction between PAX5 and FOXP1 negatively suppresses the Pax5 gene in B-ALL patients.Additionally, ELN and PML genes have been found to fuse with PAX5, leading to adverse effects on B-cell differentiation. ELN-PAX5 interaction results in the decreased expression of LEF1, MB1, and BLNK, while PML-PAX5 is critical in the early stages of leukemia. PAX5 fusion genes prevent the transcription of the PAX5 gene, making it an essential target gene for the study of leukemia progression and the diagnosis of B-ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.