Nanofibrous double-layer matrices were prepared by electrospinning technique with the bottom layer formed from PCL (poly-ε-caprolactone)/PLLA (poly-l-lactic acid) nanofibers and the upper layer from PCL/Gelatin nanofibers. Bottom layer was designed to give mechanical strength to the system, whereas upper layer containing gelatin was optimized to improve the cell adhesion. Gelatin microspheres were incorporated in the middle of two layers for controlled growth factor delivery. Successful fabrication of the blend nanofibers were shown by spectroscopy. Scanning electron microscopy results demonstrated that bead-free nanofibers with uniform morphology could be obtained by 10% w/v concentrations of PCL/PLLA and PCL/Gelatin solutions. Microspheres prepared by 15% gelatin concentration and cross-linked with 7.5% glutaraldehyde solution were chosen after in vitro release studies for the incorporation to the double-layer matrices. The optimized conditions were used to prepare fibroblast growth factor-2 (FGF-2) loaded microspheres. Preliminary cell culture studies showed that the FGF-2 could be actively loaded into the microspheres and enhanced the cell attachment and proliferation. The complete system had a slow degradation rate in saline (18% weight loss in 2 months) and it could meanwhile preserve its integrity. This sandwich system prevented microsphere leakage from the scaffold, and the hydrophilic and bioactive nature of the fibers at the upper layer promoted cell attachment to the surface. PLLA/PCL layer, on the other hand, improved the mechanical properties of the system and enabled better handling.
In the present study, a novel, wearable textile based microfluidic device was developed that provides a non-invasive, rapid, semi-quantitative detection of the lactate level in simulated sweat solution. The potential application was envisioned to be a biosensor that can monitor an athlete’s physical status during exercise. A photolithography technique was used for the fabrication of hydrophilic micro channels and reservoirs surrounded by hydrophobic barriers made from SU-8 negative photoresist. The reservoirs were functionalized by co-immobilization of lactate oxidase (LOX) and horseradish peroxidase (POX) enzymes. LOX uses L-(+)-Lactic acid as substrate and produces H2O2 which is a POX substrate. Then, POX oxidases H2O2 in the presence of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and results in color formation. The studies showed that excess amount of analyte presence resulted in analyte inhibition. It was also shown that analyte pH and temperature were effective on the color formation. For effective results, analyte pH and temperature should be ≥5℃ and 25–30℃, respectively. Lower pH and higher temperature values resulted in a decrease in the enzyme activity. The textile based biosensor system could make a semi-quantitative visual detection to differentiate between the normal (<5 mM) and high (≥5 mM) lactate level: while a high lactate level led to a denser purple color formation, normal levels led to a light purple formation and a green color started to be observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.