In the present study, a novel, wearable textile based microfluidic device was developed that provides a non-invasive, rapid, semi-quantitative detection of the lactate level in simulated sweat solution. The potential application was envisioned to be a biosensor that can monitor an athlete’s physical status during exercise. A photolithography technique was used for the fabrication of hydrophilic micro channels and reservoirs surrounded by hydrophobic barriers made from SU-8 negative photoresist. The reservoirs were functionalized by co-immobilization of lactate oxidase (LOX) and horseradish peroxidase (POX) enzymes. LOX uses L-(+)-Lactic acid as substrate and produces H2O2 which is a POX substrate. Then, POX oxidases H2O2 in the presence of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and results in color formation. The studies showed that excess amount of analyte presence resulted in analyte inhibition. It was also shown that analyte pH and temperature were effective on the color formation. For effective results, analyte pH and temperature should be ≥5℃ and 25–30℃, respectively. Lower pH and higher temperature values resulted in a decrease in the enzyme activity. The textile based biosensor system could make a semi-quantitative visual detection to differentiate between the normal (<5 mM) and high (≥5 mM) lactate level: while a high lactate level led to a denser purple color formation, normal levels led to a light purple formation and a green color started to be observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.