We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.
This cross-sectional study was conducted between January and June 2020, in five large poultry slaughter slabs in Dar es Salaam, Tanzania. Purposive sampling was used to select broilers and spent layers, from which meat and cloaca swabs were collected to determine the occurrence of multidrug resistant (MDR) Escherichia coli. Identification of isolates was done using API 20E, and antimicrobial susceptibility testing was performed as per CLSI (2018) guidelines. EBSL (CTX-M, TEM, SHV) and plasmid mediated quinolone (qnrA, qnrB, qnrS and aac(6′)-Ib-cr) were screened using PCR. Out of 384 samples, 212 (55.2%) were positive for E. coli, of which 147 (69.3%) were resistant to multiple drugs (MDR). Highest resistance was detected to tetracycline (91.9%), followed by sulfamethoxazole-trimethoprim (80.5%), ampicillin (70.9%), ciprofloxacin (40.2%) and 25% cefotaxime, gentamycin (10.8%) and imipenem (8.6%) (95% CI, p < 0.01). Out of the E. coli-positive samples, ten (10/212) (4.7%) were ESBL producing E. coli, of which CTX-M was detected in two isolates and quinolones resistant gene (qnrS) in eight, while TEM, SHV, qnrA, qnrB and aac(6′)-lb-cr were not detected. The high level of resistance and multidrug resistance imply these antibiotics are ineffective, add unnecessary cost to poultry farmers and certainly facilitate emergence and spread of resistance.
We conducted environmental surveillance of antimicrobial resistance (AMR) bacteria in the Msimbazi river basin in Tanzania to determine the occurrence of extended-spectrum β-lactamase (ESBL)-producing, carbapenem resistant Enterobacteriaceae (CRE) and quinolone resistant Escherichia coli and Klebsiella spp. A total of 213 Enterobacteriaceae isolates were recovered from 219 samples. Out of the recovered isolates, 45.5% (n = 97) were Klebsiella pneumoniae and 29.6% (n = 63) were Escherichia coli. K. pneumoniae isolates were more resistant in effluent (27.9%) compared to the E. coli (26.6%). The E. coli had a higher resistance in river water, sediment and crop soil than the K. pneumoniae (35 versus 25%), respectively. Higher resistance in K. pneumoniae was found in nalidixic acid (54.6%) and ciprofloxacin (33.3%) while the E. coli isolates were highly resistant to ciprofloxacin (39.7%) and trimethoprim/sulfamethoxazole (38%). Resistance increased from 28.3% in Kisarawe, where the river originates, to 59.9% in Jangwani (the middle section) and 66.7% in Upanga West, where the river enters the Indian Ocean. Out of 160 E. coli and K. pneumoniae isolates, 53.2% (n = 85) were resistant to more than three classes of the antibiotic tested, occurrence being higher among ESBL producers, quinolone resistant and carbapenem resistant strains. There is an urgent need to curb environmental contamination with antimicrobial agents in the Msimbazi Basin.
In low-income countries, the empirical treatment of urinary tract infections (UTIs) without laboratory confirmation is very common, especially in primary health facilities. This scenario often leads to unnecessary and ineffective antibiotic prescriptions, prompting the emergence and spread of antimicrobial resistance. We conducted this study to examine the antibiogram of uropathogens causing community-acquired urinary tract infections among outpatients attending selected health facilities in Tanzania. Method: This was a cross-sectional health centre-based survey conducted for a period of five months, from July to November 2021, in the Mwanza and Dar es Salaam regions in Tanzania. We enrolled consecutively a total of 1327 patients aged between 2 and 96 years with a median [IQR] age of 28 [22–39] from Dar es Salaam (n = 649) and Mwanza (n = 678). Results: Significant bacteriuria was observed in 364 (27.4% [95%CI: 25.0–29.9]) patients, from whom 412 urinary pathogens were isolated. Gram-negative bacteria contributed to 57.8% (238) of the 412 uropathogens isolated, of which 221 were Enterobacterales, and Escherichia coli was the most frequent. Staphylococcus aureus and Staphylococcus haemolyticus were the most frequently isolated among Gram-positive uropathogens (n = 156). Generally, resistance among Escherichia coli ranged from 0.7% (meropenem) to 86.0% (ampicillin) and from 0.0% (meropenem) to 75.6% (ampicillin) in other Enterobacterales. Moreover, about 45.4% (108) of Enterobacterales and 22.4% (35) of Gram-positive bacteria were multidrug resistant (MDR), p = 0.008. We observed 33 MDR patterns among Gram-negative bacteria, predominantly AMP-CIP-TCY (23/108; 21.3%), and 10 MDR patterns among Gram-positive bacteria, most commonly CIP-GEN-TCY (22/35; 62.9%). Conclusion: the presence of a high number of wide-ranging uropathogens that are multidrug resistant to a variety of antibiotics points to the need to strengthen the laboratory diagnostic systems for the regular surveillance of the antimicrobial resistance of uropathogens to guide and update empirical treatment guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.