Atmospheric nitrogen (N) deposition is an important determinant of N availability for natural ecosystems worldwide. Increased anthropogenic N deposition shifts the stoichiometric equilibrium of ecosystems, with direct and indirect impacts on ecosystem functioning and biogeochemical cycles. Current simulation data suggest that remote tropical forests still receive low atmospheric N deposition due to a lack of proximate industry, low rates of fossil fuel combustion, and absence of intensive agriculture. We present field-based N deposition data for forests of the central Congo Basin, and use ultrahigh-resolution mass spectrometry to characterize the organic N fraction. Additionally, we use satellite data and modeling for atmospheric N source apportionment. Our results indicate that these forests receive 18.2 kg N hectare years as wet deposition, with dry deposition via canopy interception adding considerably to this flux. We also show that roughly half of the N deposition is organic, which is often ignored in N deposition measurements and simulations. The source of atmospheric N is predominantly derived from intensive seasonal burning of biomass on the continent. This high N deposition has important implications for the ecology of the Congo Basin and for global biogeochemical cycles more broadly.
The observation of high losses of bioavailable nitrogen (N) and N richness in tropical forests is paradoxical with an apparent lack of N input. Hence, the current concept asserts that biological nitrogen fixation (BNF) must be a major N input for tropical forests. However, well‐characterized N cycles are rare and geographically biased; organic N compounds are often neglected and soil gross N cycling is not well quantified. We conducted comprehensive N input and output measurements in four tropical forest types of the Congo Basin with contrasting biotic (mycorrhizal association) and abiotic (lowland–highland) environments. In 12 standardized setups, we monitored N deposition, throughfall, litterfall, leaching, and export during one hydrological year and completed this empirical N budget with nitrous oxide (N2O) flux measurement campaigns in both wet and dry season and in situ gross soil N transformations using 15N‐tracing and numerical modeling. We found that all forests showed a very tight soil N cycle, with gross mineralization to immobilization ratios (M/I) close to 1 and relatively low gross nitrification to mineralization ratios (N/M). This was in line with the observation of dissolved organic nitrogen (DON) dominating N losses for the most abundant, arbuscular mycorrhizal associated, lowland forest type, but in contrast with high losses of dissolved inorganic nitrogen (DIN) in all other forest types. Altogether, our observations show that different forest types in central Africa exhibit N fluxes of contrasting magnitudes and N‐species composition. In contrast to many Neotropical forests, our estimated N budgets of central African forests are imbalanced by a higher N input than output, with organic N contributing significantly to the input‐output balance. This suggests that important other losses that are unaccounted for (e.g., NOx and N2 as well as particulate N) might play a major role in the N cycle of mature African tropical forests.
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.
Seed and pollen dispersal are important for defining sustainable forest management practices. By reducing population density, selective logging could affect not only the seed production of timber species but also the selfing rate and the patterns of seed and pollen rains. To assess these risks, we characterized seed and pollen dispersal patterns and the fine-scale spatial genetic structure (FSGS) of Pericopsis elata, a gregarious, wind-dispersed legume tree which is highly logged in Central Africa and threatened by overexploitation. Eleven microsatellite markers were used to genotype 189 adults and 664 seedlings in a 4 km 2 plot in the Democratic Republic of Congo (DRC). According to the neighbourhood model, seed dispersal was extremely leptokurtic, with 80% of seeds dispersal distances <75 m, 15% >500 m. Pollen dispersal was locally more extensive (median distance 260 m), but pollen immigration was not detected, and the selfing rate (54%) appeared particularly high compared to other tropical tree species. Limited gene dispersal resulted in remarkably high FSGS (S p = 0.072). A decay of inbreeding with age also suggests that the species is prone to inbreeding depression. The reproductive success of trees was positively related to their diameter at breast height (dbh), with half of the progeny mothered by trees with dbh > 97 cm and fathered by trees with dbh > 119 cm. Our study highlights that (1) seed sources must be diversified for plantation or population reinforcement to limit consanguinity, and (2) the legal minimum cutting diameter in DRC (60 cm) should be increased to maintain enough post-logging reproductive potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.