<abstract>
<p>Outliers can cause significant errors in forecasting, and it is essential to reduce their impact without losing the information they store. Information loss naturally arises if observations are dropped from the dataset. Thus, two alternative procedures are considered here: the Fast Minimum Covariance Determinant and the Iteratively Reweighted Least Squares. The procedures are used to estimate factor models robust to outliers, and a comparison of the forecast abilities of the robust approaches is carried out on a large dataset widely used in economics. The dataset includes observations relative to the 2009 crisis and the COVID-19 pandemic, some of which can be considered outliers. The comparison is carried out at different sampling frequencies and horizons, in-sample and out-of-sample, on relevant variables such as GDP, Unemployment Rate, and Prices for both the US and the EU.</p>
</abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.