This paper presents guidelines for the calibration of radiation beams that were issued by the International Atomic Energy Agency (IAEA TRS 398), the American Association of Physicists in Medicine (AAPM TG 51) and the German task group (DIN 6800-2). These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standard laboratory’s reference quality beam, where the previous protocols were based on air kerma standards. This study aims to determine uncertainties in dosimetry for electron beam radiotherapy using internationally established high-energy radiotherapy beam calibration standards. Methods: Dw was determined in 6-, 12- and 18 MeV electron energies under reference conditions using three cylindrical and two plane-parallel ion chambers in concert with the IAEA TRS 398, AAPM TG 51 and DIN 6800-2 absorbed dose protocols. From mean measured Dw values, the ratio TRS 398/TG 51 was found to vary between 0.988 and 1.004, while for the counterpart TRS 398/DIN 6800-2 and TG 51/DIN 6800-2, the variation ranges were 0.991–1.003 and 0.997–1.005, respectively. For the cylindrical chambers, the relative combined uncertainty (k = 1) in absorbed dose measurements was 1.44%, while for the plane-parallel chambers, it ranged from 1.53 to 1.88%. Conclusions: A high degree of consistency was demonstrated among the three protocols. It is suggested that in the use of the presently determined dose conversion factors across the three protocols, dose intercomparisons can be facilitated between radiotherapy centres.
We compared the results of absorbed dose measurements made using the TRS-398, TG-51, and DIN protocols and their associated uncertainties to reduce discrepancies in measurement results made using the three protocols. This experiment was carried out on two Varian Medical linear accelerators with 4, 6, 10, and 20 MV photon energies using FC65-G and CC15 (cylindrical) and NACP-02-type (plane-parallel) ion chambers in water phantoms. The radiation beam quality index (Q) was determined from the measurement of percentage depth dose. It was used to determine the photon beam quality factor required with the ionization chamber calibration factor to convert the ion chamber reading into the absorbed dose to water. For the same beam quality, the TRS-398/TG-51 varied from 0.01% to 1.8%, whereas the ratio for TRS-398/DIN 6800-2 varied from 0.1% to 0.88%. The chamber-to-chamber variation was 0.09% in TRS-398/TG-51, 0.03% in TRS-398/DIN, and 0.02% in TG-51/DIN 6800-2. The expanded uncertainties (k = 1) were 1.24 and 1.25 when using TRS-398 and DIN 6800-2, respectively. Using the aforementioned three protocols, the results showed little chamber-to-chamber variation and uncertainty in absorbed dose measurements. The estimated uncertainties when using cylindrical ion chambers were slightly lower than those measured using plane-parallel chambers. The results are important in facilitating comparisons of absorbed dose measurements when using the three protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.