Reliable prediction of groundwater depth fluctuations has been an important component in sustainable water resources management. In this study, a data-driven prediction model combining discrete wavelet transform (DWT) preprocess and support vector machine (SVM) was proposed for groundwater depth forecasting. Regular artificial neural networks (ANN), regular SVM, and wavelet preprocessed artificial neural networks (WANN) models were also developed for comparison. These methods were applied to the monthly groundwater depth records over a period of 37 years from ten wells in the Mengcheng County, China. Relative absolute error (RAE), Pearson correlation coefficient (r), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were adopted for model evaluation. The results indicate that wavelet preprocess extremely improved the training and test performance of ANN and SVM models. The WSVM model provided the most precise and reliable groundwater depth prediction compared with ANN, SVM, and WSVM models. The criterion of RAE, r, RMSE, and NSE values for proposed WSVM model are 0.20, 0.97, 0.18 and 0.94, respectively. Comprehensive comparisons and discussion revealed that wavelet preprocess extremely improves the prediction precision and reliability for both SVM and ANN models. The prediction result of SVM model is superior to ANN model in generalization ability and precision. Nevertheless, the performance of WANN is superior to SVM model, which further validates the power of data preprocess in data-driven prediction models. Finally, the optimal model, WSVM, is discussed by comparing its subseries performances as well as model performance stability, revealing the efficiency and universality of WSVM model in data driven prediction field.
The second-order chaotic oscillation system model is used to analyze the dynamic behavior of chaotic oscillations in power system. To suppress chaos and stabilize voltage within bounded time independent of initial condition, an adaptive fixed-time fast terminal sliding mode chaos control strategy is proposed. Compared with the conventional fast terminal sliding mode control strategy and finite-time control strategy, the proposed scheme has advantages in terms of convergence time and maximum deviation. Finally, simulation results are given to demonstrate the effectiveness of the proposed control scheme and the superior performance.
Multi-scale object detection is a research hotspot, and it has critical applications in many secure systems. Although the object detection algorithms have constantly been progressing recently, how to perform highly accurate and reliable multi-class object detection is still a challenging task due to the influence of many factors, such as the deformation and occlusion of the object in the actual scene. The more interference factors, the more complicated the semantic information, so we need a deeper network to extract deep information. However, deep neural networks often suffer from network degradation. To prevent the occurrence of degradation on deep neural networks, we put forth a new model using a newly-designed Pre-ReLU, which inserts a ReLU layer before the convolution layer for the sake of preventing network degradation and ensuring the performance of deep networks. This structure can transfer the semantic information more smoothly from the shallow to the deep layer. However, the deep networks will encounter not only degradation, but also a decline in efficiency. Therefore, to speed up the two-stage detector, we divide the feature map into many groups so as to diminish the number of parameters. Correspondingly, calculation speed has been enhanced, achieving a balance between speed and accuracy. Through mathematical demonstration, a Balanced Loss (BL) is proposed by a balance factor to decrease the weight of the negative sample during the training phase to balance the positives and negatives. Finally, our detector demonstrates rosy results in a range of experiments and gains an mAP of 73.38 on PASCAL VOC2007, which approaches the requirement of many security systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.