Neural circuits are responsible for the brain’s ability to process and store information. Reductionist approaches to understanding the brain include isolation of individual neurons for detailed characterization. When maintained in vitro for several days or weeks, dissociated neurons self-assemble into randomly connected networks that produce synchronized activity and are capable of learning. This review focuses on efforts to control neuronal connectivity in vitro and construct living neural circuits of increasing complexity and precision. Microfabrication-based methods have been developed to guide network self-assembly, accomplishing control over in vitro circuit size and connectivity. The ability to control neural connectivity and synchronized activity led to the implementation of logic functions using living neurons. Techniques to construct and control three-dimensional circuits have also been established. Advances in multiple electrode arrays as well as genetically encoded, optical activity sensors and transducers enabled highly specific interfaces to circuits composed of thousands of neurons. Further advances in on-chip neural circuits may lead to better understanding of the brain.
Neurological disorders affect millions of Americans and this number is expected to rise with the aging population. Development of drugs to treat these disorders may be facilitated by improved in vitro models that faithfully reproduce salient features of the relevant brain regions. Current 3D culture methods face challenges with reliably reproducing microarchitectural features of brain morphology such as cortical or hippocampal layers. In this work, polydimethylsiloxane (PDMS) mini-wells were used to create low aspect ratio, adherent 3D constructs where neurons self-assemble into layers. Layer self-assembly was determined to depend on the size of the PDMS mini-well. Layer formation occurred in cultures composed of primary rat cortical neurons or human induced pluripotent stem cell—derived neurons and astrocytes and was robust and reproducible. Layered 3D constructs were found to have spontaneous neural activity characterized by long bursts similar to activity in the developing cortex. The responses of layered 3D cultures to drugs were more similar to in vivo data than those of 2D cultures. 3D constructs created with this method may be thus suitable as in vitro models for drug discovery for neurological disorders.
Aggregation and self-sorting of cells in three dimensional cultures have been described for non-neuronal cells. Despite increased interest in engineered neural tissues for treating brain injury or for modeling neurological disorders in vitro, little data is available on collective cell movements in neuronal aggregates. Migration and sorting of cells may alter these constructs’ morphology and, therefore, the function of their neural circuitry. In this work, linear, adhered rat and human 3D neuronal-astrocyte cultures were developed to enable the study of aggregation and sorting of these cells. An in silico model of the contraction, clustering, and cell sorting in the 3D cultures was also developed. Experiments and computational modeling showed that aggregation was mainly a neuron mediated process, and formation of astrocyte-rich sheaths in 3D cultures depended on differential attraction between neurons and astrocytes. In silico model predicted formation of self-assembled neuronal layers in disk-shaped 3D cultures. Neuronal activity patterns were found to correlate with local morphological differences. This model of neuronal and astrocyte aggregation and sorting may benefit future design of neuronal constructs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.