The vector control (VC) method based on proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) integrated in a counter rotating wind turbine (CRWT) system have many problems, such as low dynamic performances, coupling effect between the d-q axes and weak robustness against variation parametric. In order to resolve these problems, this research work proposes an adaptive backstepping sliding mode (ABSM) controller. The proposed control strategy consists in using dynamic-gains that ensures a better result than a conventional VC method. Stability of the proposed ABSM control approach has been proved by the Lyapunov method. Simulation results depicted in this research paper have confirmed the good usefulness and effectiveness of the proposed ABSM control.
<span>This article presents an improved Direct Torque Control (DTC) technique with space vector modulation (SVM) for a five-phase permanent magnet synchronous motor (PMSM) using a sliding mode speed control (SMC).The proposed control scheme of the five-phase PMSM combines the advantages of SMC control and the SVM algorithm. The SMC method insensitive to uncertainties, in particular external disturbances and parameter variations. In this paper, the SMC controller is used to control the rotor speed of the five-phase PMSM based on DTC-SVM. The rotor speed response, torque and stator flux are determined and compared with traditional control method. The simulations results confirm the validity and effectiveness of the proposed control technique in terms of performance and robustness against machine parameter variations (inertia variation). The efficiency of the proposed method applied on the five-phase PMSM is verified by the MATLAB/Simulink.</span>
This work presents an improved Direct Torque Control (DTC) method for a 5-phase interior permanent magnet synchronous motor (5P-IPMSM) based on space vector modulation (SVM) and fuzzy logic (FL). In this proposed DTC control, we replaced the traditional proportional-integral (PI) by the FL controller. The main goal is to improve system performance by minimizing the ripple of the stator flux and the torque ripples. The proposed control technique applied on the 5P-IPMSM is verified by Matlab/Simulink software followed by an analyzed and compared to verify the effectiveness of the proposed method. Many improvements have been made to the stator flux ripples, torque ripples, rise time and the robustness to disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.