BACKGROUND The degree of myocardial injury, as reflected by troponin elevation, and associated outcomes among U.S. hospitalized patients with coronavirus disease-2019 (COVID-19) are unknown. OBJECTIVES The purpose of this study was to describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19.
STRUCTURED ABSTRACT (250 words, current: 250)Background: The degree of myocardial injury, reflected by troponin elevation, and associated outcomes among hospitalized patients with Coronavirus Disease in the US are unknown.Objectives: To describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19. Methods:Patients with COVID-19 admitted to one of five Mount Sinai Health System hospitals in New York City between February 27th and April 12th, 2020 with troponin-I (normal value <0.03ng/mL) measured within 24 hours of admission were included (n=2,736). Demographics, medical history, admission labs, and outcomes were captured from the hospitals' EHR. Results:The median age was 66.4 years, with 59.6% men. Cardiovascular disease (CVD) including coronary artery disease, atrial fibrillation, and heart failure, was more prevalent in patients with higher troponin concentrations, as were hypertension and diabetes. A total of 506 (18.5%) patients died during hospitalization. Even small amounts of myocardial injury (e.g. troponin I 0.03-0.09ng/mL, n=455, 16.6%) were associated with death (adjusted HR: 1.77, 95% CI 1.39-2.26; P<0.001) while greater amounts (e.g. troponin I>0.09 ng/dL, n=530, 19.4%) were associated with more pronounced risk (adjusted HR 3.23, 95% CI 2.59-4.02). Conclusions:Myocardial injury is prevalent among patients hospitalized with COVID-19, and is associated with higher risk of mortality. Patients with CVD are more likely to have myocardial injury than patients without CVD. Troponin elevation likely reflects non-ischemic or secondary myocardial injury. Unstructured Abstract (100/100 words): Myocardial injury reflected as elevated troponin in Coronavirus Disease (COVID-19) is not well characterized among patients in the United States. We describe the prevalence and impact of myocardial injury among hospitalized patients with confirmed COVID-19 and troponin-I measurements within 24 hours of admission (N=2,736). Elevated troponin concentrations (normal <0.03ng/mL) were commonly observed in patients hospitalized with COVID-19, most often present at low levels, and associated with increased risk of death. Patients with cardiovascular disease (CVD) or risk factors for CVD were more likely to have myocardial injury. Troponin elevation likely reflects non-ischemic or secondary myocardial injury.
Background COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. Objective The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. Methods We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19–positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. Results Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. Conclusions We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.