Intervertebral disc (IVD) degeneration is known to aggravate with age and oxidative stress is implicated in the pathogenesis of many age-related diseases. Nuclear factor (erythroid-derived-2)-like 2 (Nrf2) can confer adaptive protection against oxidative and proteotoxic stress in cells. In this study, we assessed whether Nrf2 can protect against oxidative stress in nucleus pulposus (NP) cells. In addition, we investigated Nrf2 expression in NP tissue samples from patients with different degrees of IVD degeneration and a mouse model of aging and IVD degeneration and the influence of H
2
O
2
-induced oxidative stress on autophagic pathways in NP cells. Autophagy was assessed by measuring levels of autophagy-related protein (ATG) family members and the autophagic markers, p62 and LC3. We found that expression of Nrf2 progressively decreased in human NP tissue samples of patients with increasing degrees of IVD degeneration. Nrf2 deficiency leads to the degeneration of IVDs during aging. Nrf2 knockout also aggravates IVD degeneration and reduces autophagic gene expression in an induced mouse model of IVD degeneration. The detrimental effects of H
2
O
2
-induced oxidative stress were increased in autophagy-deficient cells via reduced expression of Atg7 and the Keap1–Nrf2–p62 autophagy pathway. Taken together, these results suggest that excessive oxidative stress causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response activated by a Keap1-Nrf2-p62 feedback loop in IVD degeneration.
The results revealed the role of p38/caveolin-1/β-catenin in inflammatory cytokine-induced apoptosis in rat NP cells. Thus, controlling p38/caveolin-1/β-catenin activity seemed to regulate IL-1β- and TNF-α-induced apoptosis in the NP during intervertebral disc degeneration.
The destruction of the low oxygen microenvironment in nucleus pulposus (NP) cells played a critical role in the pathogenesis of intervertebral disc degeneration (IVDD). The purpose of this study was to determine the potential role of integrin alpha 6 (ITG α6) in NP cells in response to high oxygen tension (HOT) in IVDD. Immunofluorescence staining and western blot analysis showed that the levels of ITG α6 expression were increased in the NP tissue from IVDD patients and the IVDD rat model with mild degeneration, which were reduced as the degree of degeneration increases in severity. In NP cells, the treatment of HOT resulted in upregulation of ITG α6 expression, which could be alleviated by blocking the PI3K/AKT signaling pathway. Further studies found that ITG α6 could protect NP cells against HOT-induced apoptosis and oxidative stress and protect NP cells from HOT-inhibited ECM protein synthesis. Upregulation of ITG α6 expression by HOT contributed to maintaining NP tissue homeostasis through the interaction with hypoxia-inducible factor-1α (HIF-1α). Furthermore, silencing of ITG α6 in vivo could obviously accelerate puncture-induced IVDD. Taken together, these results revealed that the increase of ITG α6 expression by HOT in NP cells might be a protective factor in IVD degeneration as well as restore NP cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.