BackgroundDengue virus is circulating in Pakistan since 1994, which causes major and minor outbreaks in many areas of the country. The incidence of dengue in Pakistan in past years mainly restricted to parts of Sindh and Punjab provinces. As such, a severe dengue outbreak appeared in Pakistan in 2011, particularly in Punjab province with Lahore as the most hit city (290 deaths). In 2013, for the first time in the history of Pakistan, dengue outbreak erupted in Swat District, Khyber Pakhtunkhwa, which claimed more than 57 lives. Hence this study was conducted to document circulating serotypes of dengue virus in Pakistan in 2011 and 2013 dengue outbreaks in two different territories/areas of the country.MethodsIn total, 1340 blood samples from people having dengue (ELISA positive) and/or dengue like symptoms from various cities/areas of Punjab and Swat, Khyber Pakhtunkhwa (KP) were collected and analyzed by reverse transcription polymerase chain reaction (RT-PCR) using serotype specific primers.ResultsThe results indicated that all the four dengue virus serotypes were circulating in Punjab Province with highest frequency of DENV-2 (41.64 %) and DENV-3 (41.05 %). Similarly, DENV-2 (41.66 %) and DENV-3 (35.0 %) were dominant serotypes detected in KP-based people lived in Punjab. On the other hand only DENV-2 (40.0 %) and DENV-3 (60.0 %) were detected in Swat District. Furthermore an important observation noted in this study was mixed infection of DENV-2 and DENV-3 in Punjab in 2011 (3.81 %) and in people from KP infected in Punjab (8.33 %) which may account for the high mortality and morbidity rates as compared to previous outbreaks. Over all male population was mostly infected as compared to females and people in the age group between 15 to 45 was the highest infected group.ConclusionsThe findings of this study indicate that all four serotypes of dengue virus are circulating in Punjab whereas serotypes 2 and 3 introduced for the first time into Swat, KP in 2013; about 600 km away from Lahore, Punjab. Overall dengue virus serotypes 2 and 3 were the major outbreak-causing serotypes in Pakistan in 2011 and 2013. Dengue outbreak in Swat may be the continuation of previous dengue outbreaks in Punjab but it needs further research and investigation.
Infection due to hepatitis C virus (HCV) is a major cause of fibrosis and hepatocellular carcinoma in Pakistan. In the current review, pattern of HCV genotypes and subtypes in Khyber Pakhtunkhwa province was ascertained in light of the available literature. After thorough analysis, genotype 3 (58.27%) was determined to be the leading HCV genotype, followed by genotypes 2 (12.39%), 1 (9.54%) and 4 (0.86%). The proportions of genotypes 5 and 6 were recorded as 0.09% and 0.22% respectively. Subtype wise, 3a accounted for 48.67%, followed by subtype 2a (10.91%), 3b (9.43%), 1a (5.84%), 1b (3.66%), 2b (1.45%) and genotype 4 with its undefined subtypes contributed a portion of 0.86%. The cumulative share of subtypes 1c, 2c, 3c, 5a and 6a was less than 1%. In 11.51% cases, the subtype was untypeable while in 7.17% cases mixed subtypes were recorded. Gender wise, proportions of most HCV subtypes were marginally higher among males as compared to females. On the basis of studied groups, 3a was pervasive among all groups except in intravenous drug users where 2a was the major HCV subtype. Similarly, based on various geographical locations (provincial divisions), subtype 3a revealed a ubiquitous distribution. Conclusively, HCV 3a persists to be the principal subtype across the province of Khyber Pakhtunkhwa. The considerable number of untypeable subtypes in most studies urges for an improved genotyping system on the basis of local sequence data and practice of sequencing for determination of underlying subtype in untypeable cases. Further, studies on identification of subtypes transmission pattern are imperative for assessment of transmission origin and reinforcement of efficient control strategies. In addition, the current review emphasizes the need of attention toward HCV risk groups and ignored southern side of Khyber Pakhtunkhwa province for better holistic understanding of HCV genotype distribution pattern in the province.
BackgroundThe purpose of this study was to explore molecular epidemiology of HCV genotype 3a in Peshawar based on sequencing and phylogenetic analysis of Core region of HCV genome.MethodsChronically infected Hepatitis C virus infected patients enrolled under the Prime Minister Hepatitis C control program at three Tertiary care units of Peshawar [Khyber Teaching Hospital Peshawar, Lady Reading Hospital Peshawar, Hayat Abad Medical Complex Peshawar] were included in this cross sectional observational study. Qualitative detection of HCV and HCV genotyping was carried out by a modified reverse transcription-polymerase chain reaction (RT-PCR) and type specific genotyping assay. The Core gene of HCV genotype 3a was amplified, cloned and sequenced. The sequences obtained were used for phylogenetic analysis using MEGA 6 software.ResultsAmong the 422 (82.75 %) PCR positive samples, 192 (45.5 %) were identified as having HCV genotype 3a infection. HCV Core gene sequencing was carried out randomly for the characterization of HCV 3a. Nucleotide sequence analysis of the obtained viral genomic sequences based on partial HCV 3a Core gene sequences with reference sequences from different countries showed that our sequences clustered with some local and regional sequences with high bootstrap values.ConclusionHCV 3a is highly prevalent in Peshawar, Pakistan and its phylogenetics based on Core gene sequences indicate the prevalence of different lineages of HCV 3a in Peshawar which may have consequences for disease management strategies causing more economic pressure on the impoverished population due to possible antiviral resistance.
To minimize the hazardous effect of physical and chemical synthesis of nanoparticles we focused on the green synthesis of nanoparticles. Nanotechnology is a research hotspot and catch great attention because of its versatile applications in medical, biosciences and engineering fields. Purpose of our recent study is to synthesize bio-inspired metallic silver NPs by root mediated Zingiber officianale extract. The synthesized Ag-NPs were further characterized by using UVVisible spectroscopy, XRD, EDX, SEM, TEM and DLS techniques. The extent of crystallites were confirmed by X-ray diffraction. SEM and TEM revealed the morphological features with size of nanoparticles between 17.3 and 41.2 nm. FTIR analysis confirmed the capping of nanoparticles by bio active constituents present in Zingiber officinale extract. Later EDX confirmed the elemental composition of nanoparticles. Zeta potential, PDI and hydrodynamic size of Ag-NPs were confirmed by DLS. The synthesize Ag-NPs possess eminent biological potency against bacterial and leishmanial strains. Moreover considerable anti-diabetic, anticancer, antioxidant and biocompatibility nature of Ag-NPs was elucidated. The highest antioxidant activity of 50.61± 1.12%, 38.22 ± 1.18% and 27.39 ± 0.92 at 200 g/mL for TAC, TRP DPPH and was observed respectively. Ag-NPs exhibit potent leishmanicidal activity of 80% ± 1.4 against promastigotes and 77% ± 1.6 against amastigotes cultures of L. tropica. Highest antidiabetic activity 30 ± 0.77% recorded at 200 μg/ml. Highest Brine shrimps cytotoxicity of Ag-NPs was 60 ± 1.18 at 200 g/ml. Maximum dye degradation for Ag-NPs was recorded as 94.1% at 140 minute. All UTI isolates were resistant to antibiotics not coated with Ag-NPs. By applying 1% of Ag-NPs highest activity was recorded as 25 ± 1.58 mm against K. pneumoniae. Maximum zone of inhibition for Ag-NPs coated with Imipenem antibiotics 26 ± 1.5 mm against K. pneumoniae and coated with Ciprofloxacin 26 ± 1.4 m against S. aureus were measured. Last but not least high biocompatible nature of Ag-NPs was observed against fresh RBCs making the ecofriendly biosynthesized silver NPs a multi-dimensional candidate in biomedical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.