KRAS represents an excellent therapeutic target in lung cancer, the most commonly mutated form of which can now be blocked using KRAS-G12C mutant-specific inhibitory trial drugs. Lung adenocarcinoma cells harboring KRAS mutations have been shown previously to be selectively sensitive to inhibition of mitogen-activated protein kinase kinase (MEK) and insulin-like growth factor 1 receptor (IGF1R) signaling. Here, we show that this effect is markedly enhanced by simultaneous inhibition of mammalian target of rapamycin (mTOR) while maintaining selectivity for the KRAS-mutant genotype. Combined mTOR, IGF1R, and MEK inhibition inhibits the principal signaling pathways required for the survival of KRAS-mutant cells and produces marked tumor regression in three different KRAS-driven lung cancer mouse models. Replacing the MEK inhibitor with the mutant-specific KRAS-G12C inhibitor ARS-1620 in these combinations is associated with greater efficacy, specificity, and tolerability. Adding mTOR and IGF1R inhibitors to ARS-1620 greatly improves its effectiveness on KRAS-G12C mutant lung cancer cells in vitro and in mouse models. This provides a rationale for the design of combination treatments to enhance the impact of the KRAS-G12C inhibitors, which are now entering clinical trials.
In addition to the classical TH1 and TH2 cytokines, members of the recently identified IL-17 cytokine family play an important role in regulating cellular and humoral immune responses. At present nothing is known about the role of these cytokines in atherosclerosis. Expression of IL-17A, -E and -F was investigated in atherosclerotic tissue by rtPCR and immunohistochemistry. IL-17E and its receptor were further studied in cultured smooth muscle cells and endothelial cells, using rtPCR and western blot. rtPCR showed that IL-17A, -E and -F were expressed in the majority of plaques under investigation. IL-17A/F was expressed by mast cells in all stages of plaque development. IL-17A/F(+) neutrophils were always observed in complicated plaques, but hardly in intact lesions. IL-17A/F(+) Tcells ('TH17') were never observed. IL-17E was expressed by smooth muscle cells and endothelial cells in both normal and atherosclerotic arteries, and in advanced plaques also extensively by mature B cells. Cultured smooth muscle cells and endothelial cells were found to express both IL-17E and its functional receptor (IL-17RB). The constitutive expression of IL-17E by resident plaque cells, and the additional presence of IL-17E(+) B cells and IL-17A/F(+) neutrophils in advanced and complicated plaques indicates a complex contribution of IL-17 family cytokines in human atherosclerosis, depending on the stage and activity of the disease.
S U M M A R YMatrix metalloproteinases (MMPs) such as gelatinases are believed to play an important role in invasion and metastasis of cancer. In this study we investigated the possible role of MMP-2 and MMP-9 in an experimental model of colon cancer metastasis in rat liver. We demonstrated with gelatin zymography that the tumors contained MMP-2 and MMP-9, but only MMP-2 was present in the active form. Immunolocalization of MMP-2 showed that the protein was localized at basement membranes of colon cancer cells and in intratumor stroma, associated with extracellular matrix (ECM) components. However, zymography and immunohistochemistry (IHC) do not provide information on the localization of MMP activity. Therefore, we developed an in situ zymography technique using the quenched fluorogenic substrate DQ-gelatin in unfixed cryostat sections. The application of DQ-gelatin in combination with a gelled medium allows precise localization of gelatinolytic activity. Fluorescence due to gelatinolytic activity was found in the ECM of tumors and was localized similarly to both MMP-2 protein and collagen type IV, its natural substrate. The localization of MMP-2 activity and collagen type IV at similar sites suggests a role of MMP-2 in remodeling of ECM of stroma in colon cancer metastases in rat liver.
Recently developed KRAS G12C inhibitory drugs are beneficial to lung cancer patients harboring KRAS G12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRAS G12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRAS G12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRAS G12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRAS G12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRAS G12C inhibitors with anti-PD1 drugs.
Extranodal marginal zone B-cell lymphomas (MZBCLs) arise on a background of chronic inflammation resulting from organ-specific autoimmunity, infection, or by unknown causes. Well-known examples are salivary gland MZBCL in Sjögren's sialadenitis and gastric MZBCL in Helicobacter pylori gastritis. MZBCLs express CXCR3, a receptor for interferon-gamma-induced chemokines highly expressed in the chronic inflammatory environment. The immunoglobulin (Ig) variable heavy/light chain (IgV(H)/IgV(L)) gene repertoire of salivary gland and gastric MZBCL appears restricted and frequently encodes B-cell receptors with rheumatoid factor reactivity. Primary cutaneous marginal zone B-cell lymphomas (PCMZLs) are regarded as the skin-involving counterparts of extranodal MZBCLs. Although PCMZLs have been associated with Borrelia burgdorferi dermatitis, PCMZLs generally arise because of unknown causes. We studied an extensive panel of PCMZLs and show that PCMZLs do not conform to the general profile of extranodal MZBCL. Whereas most noncutaneous MZBCLs express IgM, PCMZLs in majority express IgG, IgA, and IgE and do not show an obvious immunoglobulin repertoire bias. Furthermore, the isotype-switched PCMZLs lack CXCR3 and seem to arise in a different inflammatory environment, compared with other extranodal MZBCLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.