Colon cancer is a clinically diverse disease. This heterogeneity makes it difficult to determine which patients will benefit most from adjuvant therapy and impedes the development of new targeted agents. More insight into the biological diversity of colon cancers, especially in relation to clinical features, is therefore needed. We demonstrate, using an unsupervised classification strategy involving over 1,100 individuals with colon cancer, that three main molecularly distinct subtypes can be recognized. Two subtypes have been previously identified and are well characterized (chromosomal-instable and microsatellite-instable cancers). The third subtype is largely microsatellite stable and contains relatively more CpG island methylator phenotype-positive carcinomas but cannot be identified on the basis of characteristic mutations. We provide evidence that this subtype relates to sessile-serrated adenomas, which show highly similar gene expression profiles, including upregulation of genes involved in matrix remodeling and epithelial-mesenchymal transition. The identification of this subtype is crucial, as it has a very unfavorable prognosis and, moreover, is refractory to epidermal growth factor receptor-targeted therapy.
BackgroundAlthough recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ.Methodology/Principal FindingsBy spectral imaging analysis of double-stained skin sections we demonstrated that IL-17 was mainly expressed by mast cells and neutrophils and IL-22 by macrophages and dendritic cells. Only an occasional IL-17pos, but no IL-22pos T cell could be detected in psoriatic skin, whereas neither of these cytokines was expressed by T cells in normal skin. However, examination of in vitro-activated T cells by flow cytometry revealed that substantial percentages of skin-derived CD4 and CD8 T cells were able to produce IL-17A alone or together with IL-22 (i.e. Th17 and Tc17, respectively) or to produce IL-22 in absence of IL-17A and IFN-γ (i.e. Th22 and Tc22, respectively). Remarkably, a significant proportional rise in Tc17 and Tc22 cells, but not in Th17 and Th22 cells, was found in T cells isolated from psoriatic versus normal skin. Interestingly, we found IL-22 single-producers in many skin-derived IL-17Apos CD4 and CD8 T cell clones, suggesting that in vivo IL-22 single-producers may arise from IL-17Apos T cells as well.Conclusions/SignificanceThe increased presence of Tc17 and Tc22 cells in lesional psoriatic skin suggests that these types of CD8 T cells play a significant role in the pathogenesis of psoriasis. As part of the skin-derived IL-17Apos CD4 and CD8 T clones developed into IL-22 single-producers, this demonstrates plasticity in their cytokine production profile and suggests a developmental relationship between Th17 and Th22 cells and between Tc17 and Tc22 cells.
Human respiratory syncytial virus (RSV) is the most important cause of severe lower respiratory tract disease (LRTD) in young children worldwide. Extensive neutrophil accumulation in the lungs and occlusion of small airways by DNA-rich mucus plugs are characteristic features of severe RSV-LRTD. Activated neutrophils can release neutrophil extracellular traps (NETs), extracellular networks of DNA covered with antimicrobial proteins, as part of the first-line defence against pathogens. NETs can trap and eliminate microbes; however, abundant NET formation may also contribute to airway occlusion. In this study, we investigated whether NETs are induced by RSV and explored their potential anti-viral effect in vitro. Second, we studied NET formation in vivo during severe RSV-LRTD in infants and bovine RSV-LRTD in calves, by examining bronchoalveolar lavage fluid and lung tissue sections, respectively. NETs were visualized in lung cytology and tissue samples by DNA and immunostaining, using antibodies against citrullinated histone H3, elastase and myeloperoxidase. RSV was able to induce NET formation by human neutrophils in vitro. Furthermore, NETs were able to capture RSV, thereby precluding binding of viral particles to target cells and preventing infection. Evidence for the formation of NETs in the airways and lungs was confirmed in children with severe RSV-LRTD. Detailed histopathological examination of calves with RSV-LRTD showed extensive NET formation in dense plugs occluding the airways, either with or without captured viral antigen. Together, these results suggest that, although NETs trap viral particles, their exaggerated formation during severe RSV-LRTD contributes to airway obstruction.
Neovascularisation and expression of adhesion molecules by microvessels at sites of vulnerable lipid-rich plaques may sustain the influx of inflammatory cells and hence, could contribute to plaque destabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.