Human respiratory syncytial virus (RSV) is the most important cause of severe lower respiratory tract disease (LRTD) in young children worldwide. Extensive neutrophil accumulation in the lungs and occlusion of small airways by DNA-rich mucus plugs are characteristic features of severe RSV-LRTD. Activated neutrophils can release neutrophil extracellular traps (NETs), extracellular networks of DNA covered with antimicrobial proteins, as part of the first-line defence against pathogens. NETs can trap and eliminate microbes; however, abundant NET formation may also contribute to airway occlusion. In this study, we investigated whether NETs are induced by RSV and explored their potential anti-viral effect in vitro. Second, we studied NET formation in vivo during severe RSV-LRTD in infants and bovine RSV-LRTD in calves, by examining bronchoalveolar lavage fluid and lung tissue sections, respectively. NETs were visualized in lung cytology and tissue samples by DNA and immunostaining, using antibodies against citrullinated histone H3, elastase and myeloperoxidase. RSV was able to induce NET formation by human neutrophils in vitro. Furthermore, NETs were able to capture RSV, thereby precluding binding of viral particles to target cells and preventing infection. Evidence for the formation of NETs in the airways and lungs was confirmed in children with severe RSV-LRTD. Detailed histopathological examination of calves with RSV-LRTD showed extensive NET formation in dense plugs occluding the airways, either with or without captured viral antigen. Together, these results suggest that, although NETs trap viral particles, their exaggerated formation during severe RSV-LRTD contributes to airway obstruction.
Background Results from preclinical studies suggest that age-dependent differences in host defense and the pulmonary renin–angiotensin system (RAS) are responsible for observed differences in epidemiology of acute respiratory distress syndrome (ARDS) between children and adults. The present study compares biomarkers of host defense and RAS in bronchoalveolar lavage (BAL) fluid from neonates, children, adults, and older adults with ARDS. Methods In this prospective observational study, we enrolled mechanical ventilated ARDS patients categorized into four age groups: 20 neonates (< 28 days corrected postnatal age), 29 children (28 days–18 years), 26 adults (18–65 years), and 17 older adults (> 65 years of age). All patients underwent a nondirected BAL within 72 h after intubation. Activities of the two main enzymes of RAS, angiotensin converting enzyme (ACE) and ACE2, and levels of biomarkers of inflammation, endothelial activation, and epithelial damage were determined in BAL fluid. Results Levels of myeloperoxidase, interleukin (IL)-6, IL-10, and p-selectin were higher with increasing age, whereas intercellular adhesion molecule-1 was higher in neonates. No differences in activity of ACE and ACE2 were seen between the four age groups. Conclusions Age-dependent differences in the levels of biomarkers in lungs of ARDS patients are present. Especially, higher levels of markers involved in the neutrophil response were found with increasing age. In contrast to preclinical studies, age is not associated with changes in the pulmonary RAS. Electronic supplementary material The online version of this article (10.1186/s13613-019-0529-4) contains supplementary material, which is available to authorized users.
Neutrophils are the predominant inflammatory cells recruited to the respiratory tract as part of the innate immune response to viral infections. Recent reports indicate the existence of distinct functional neutrophil subsets in the circulatory compartment of adults, following severe inflammatory conditions. Here, we evaluated the occurrence of neutrophil subsets in blood and broncho-alveolar lavage fluid during severe viral respiratory infection in infants based on CD16/CD62L expression. We show that during the course of severe respiratory infection infants may develop four heterogeneous neutrophil subsets in blood (mature, immature, progenitor, and suppressive neutrophils), each with distinct activation states. However, while isolated viral respiratory infection was characterized by a relative absence of suppressive neutrophils in both blood and lungs, only patients with bacterial co-infection were shown to produce suppressive neutrophils. These data suggest the occurrence of distinct and unique neutrophil subset responses during severe viral and (secondary) bacterial respiratory infection in infants.
Respiratory syncytial virus (RSV) causes severe respiratory disease in young children. Antibodies specific for the RSV prefusion F protein have guided RSV vaccine research, and in human serum, these antibodies contribute to Ͼ90% of the neutralization response; however, detailed insight into the composition of the human B cell repertoire against RSV is still largely unknown. In order to study the B cell repertoire of three healthy donors for specificity against RSV, CD27 ϩ memory B cells were isolated and immortalized using BCL6 and Bcl-xL. Of the circulating memory B cells, 0.35% recognized RSV-A2-infected cells, of which 59% were IgAexpressing cells and 41% were IgG-expressing cells. When we generated monoclonal B cells selected for high binding to RSV-infected cells, 44.5% of IgGexpressing B cells and 56% of IgA-expressing B cells reacted to the F protein, while, unexpectedly, 41.5% of IgG-expressing B cells and 44% of IgA expressing B cells reacted to the G protein. Analysis of the G-specific antibodies revealed that 4 different domains on the G protein were recognized. These epitopes predicted cross-reactivity between RSV strain A (RSV-A) and RSV-B and matched the potency of antibodies to neutralize RSV in HEp-2 cells and in primary epithelial cell cultures. G-specific antibodies were also able to induce antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis of RSV-A2-infected cells. However, these processes did not seem to depend on a specific epitope. In conclusion, healthy adults harbor a diverse repertoire of RSV glycoprotein-specific antibodies with a broad range of effector functions that likely play an important role in antiviral immunity.IMPORTANCE Human RSV remains the most common cause of severe lower respiratory tract disease in premature babies, young infants, the elderly, and immunocompromised patients and plays an important role in asthma exacerbations. In developing countries, RSV lower respiratory tract disease has a high mortality. Without an effective vaccine, only passive immunization with palivizumab is approved for prophylactic treatment. However, highly potent RSV-specific monoclonal antibodies could potentially serve as a therapeutic treatment and contribute to disease control and mortality reduction. In addition, these antibodies could guide further vaccine development. In this study, we isolated and characterized several novel antibodies directed at the RSV G protein. This information can add to our understanding and treatment of RSV disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.