In the present study, a desired reference trajectory was autonomously tracked by means of a quadrotor unmanned aerial vehicle with a self-tuning fuzzy proportional integral derivative controller. A proportional integral derivative controller and a fuzzy system tuning gains from proportional integral derivative controller are applied to stabilize the quadrotor, to control the attitude and to track the trajectory. Inputs of fuzzy logical controller consist of the speed required for the distance between the current position of unmanned aerial vehicle and the defined reference point and differences between orientation angles and variance in differences. Outputs of fuzzy logical controller consist of the proportional integral derivative coefficients which produce pitch, roll, yaw and height values. The fuzzy proportional integral derivative control algorithm is real-time applied to the quadrotor in MATLAB/Simulink environment. Based on data from experimental studies, although both classical proportional integral derivative controller and self-tuning fuzzy proportional integral derivative controller have accomplished to track a defined trajectory with the aircraft, the self-tuning fuzzy proportional integral derivative controller has been able to control with less errors than the classical proportional integral derivative controller.
Intelligent transportation systems are advanced applications that inform vehicle drivers about road conditions. The main purpose of the intelligent transportation systems is to reduce either tangible or intangible loss for the drivers by ensuring the safety of passengers and vehicles. In this study, a system is designed and implemented using wireless sensor networks to inform vehicle drivers about the condition of the road surface. Icing has been chosen as the primary focus of the study since it is considered to be a big threat to road and driver’s safety. The temperature at 10 cm depth of the road, air temperature, relative humidity, air pressure and conductivity values are used as the input data for the prediction of icing on the road surface. The data were previously collected on Raspberry Pi which is a single-board computer and the data were read and processed instantly via k-nearest neighbor algorithm. Using these collected data, the road surface condition is classified as icy, dry, wet or salty-wet. The analyzed results for the road surface condition are presented to the drivers via a mobile application in real time. The drivers are alerted visually and audibly as they approach the coordinates on the road where risky conditions are present.
Soğuk hava ve ağır kış şartları, yollarda buzlanmaya sebep olmakta ve bu nedenle her yıl birçok ölümlü, yaralanmalı ve maddi hasarlı kaza meydana gelmektedir. Bu çalışmada yollardaki buzlanmadan kaynaklı kazaların önlenmesine yönelik bir buzlanma tahmin algoritması ve mobil uygulama geliştirilmiştir. Geliştirilen uygulama ile sürücülerin güzergâhları doğrultusunda buzlanma oluşumu ile ilgili ön bilgi verilmesi amaçlanmaktadır. Çalışmada yol durum sensörü ve hava istasyonlarından alınan sıcaklık, çiğ noktası, hissedilen sıcaklık, rüzgâr şiddeti, rüzgâr yönü, bağıl nem, rüzgâr hızı giriş parametreleri olarak kullanılmıştır. Çıkışta ise buzlanma bilgisi ile ikili sınıflandırma yapılmıştır. Sistemin eğitimi tamamlandıktan sonra meteorolojiden hava durumu tahmin bilgisi alınarak, geliştirilen mobil uygulama üzerinde gelecek 12 saat için buzlanma tahmini yapılmaktadır. Ayrıca geliştirilen sistemin doğruluğunu ölçmek ve karşılaştırma yapabilmek için sınıflandırma alanında en çok kullanılan yöntemlerden çok katmanlı algılayıcı (ÇKA) sinir ağı modeli ile doğrusal ve doğrusal olmayan destek vektör makineleri (DVM) yöntemleri kullanılmıştır. Çalışmada kullanılan algoritmaların sınıflandırma doğruluğuna bakıldığında, toplam doğru sınıflandırılan örnek sayısı temel alındığında ÇKA modelinin %87,26 doğruluk oranı ile en iyi sonucu verdiği, ardından %86,32 ile doğrusal DVM modelinin geldiği önerilen modelimizin ise %75,47 doğruluk oranına sahip olduğu görülmüştür. Ancak geliştirilen tahmin algoritmasında sınıflandırma doğruluğu diğerlerine kıyasla daha az olmasına rağmen eğitimde kullanılan örnek sayısı arttıkça, buzlanma tahmin doğruluğunun da doğru orantılı olarak arttığı gözlemlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.