The reduction and control of particulate matter generated by fossil fuel combustion are among the main issues for actual and future combustion devices due to the increasingly stringent emission regulations.Recently, various fuels have been investigated as a potential substitute or additive for diesel and gasoline. This work focuses on how oxymethylene ether-3 (OME3), the smallest promising OME compound, affects carbon particulate formation when blended with ethylene in burnerstabilized premixed flames at different equivalence ratios.Particle size distribution (PSD) and Laser-Induced Fluorescence (LIF) and Incandescence (LII) along with numerical (Conditional Quadrature Method of Moments -CQMOM, based on D'Anna
Synthetic fuels, especially oxygenated fuels, which can be used as blending components, make it possible to modify the emission properties of conventional fossil fuels. Among oxygenated fuels, one promising candidate is oxymethylene ether-3 (OME3). In this work, the sooting propensity of ethylene (C2H4) blended with OME3 is numerically investigated on a series of laminar burner-stabilized premixed flames with increasing amounts of OME3, from pure ethylene to pure OME3. The numerical analysis is performed using the Conditional Quadrature Method of Moments combined with a detailed physico-chemical soot model. Two different equivalence ratios corresponding to a lightly and a highly sooting flame condition have been investigated. The study examines how different blending ratios of the two fuels affect soot particle formation and a correlation between OME3 blending ratio and corresponding soot reduction is established. The soot precursor species in the gas-phase are analyzed along with the soot volume fraction of small nanoparticles and large aggregates. Furthermore, the influence of the OME3 blending on the particle size distribution is studied applying the entropy maximization concept. The effect of increasing amounts of OME3 is found to be different for soot nanoparticles and larger aggregates. While OME3 blending significantly reduces the amount of larger aggregates, only large amounts of OME3, close to pure OME3, lead to a considerable suppression of nanoparticles formed throughout the flame. A linear correlation is identified between the OME3 content in the fuel and the reduction in the soot volume fraction of larger aggregates, while smaller blending ratios may lead to an increased number of nanoparticles for some positions in the flame for the richer flame condition.
The Method of Moments (MOM) has largely been applied to investigate sooting laminar and turbulent flames. However, the classical MOM is not able to characterize a continuous particle size distribution (PSD). Without access to information on the PSD, it is difficult to accurately take into account particle oxidation, which is crucial for shrinking and eliminating soot particles. Recently, the Split-based Extended Quadrature Method of Moments (S-EQMOM) has been proposed as a numerically robust alternative to overcome this issue (Salenbauch et al., 2019). The main advantage is that a continuous particle number density function can be reconstructed by superimposing kernel density functions (KDF). Moreover, the S-EQMOM primary nodes are determined individually for each KDF, improving the moment realizability. <p>In this work, the S-EQMOM is combined with a Large Eddy Simulation/presumed-PDF flamelet/progress variable approach for predicting soot formation in the Delft Adelaide Flame III. The target flame features low/high sooting propensity/intermittency and comprehensive flow/scalar/soot data are available for model validation. Simulation results are compared with the experimental data for both the gas phase and the particulate phase. A good quantitative agreement has been obtained especially in terms of the soot volume fraction. The reconstructed PSD reveals predominantly unimodal/bimodal distributions in the first/downstream portion of this flame, with particle diameters smaller than 100 nm. By investigating the instantaneous and statistical sooting behavior at the flame tip, it has been found that the experimentally observed soot intermittency is linked to mixture fraction fluctuations around its stoichiometric value that exhibit a bimodal probability density function.
Reducing the uncertainties in the prediction of turbine inlet conditions is a crucial aspect to improve aero engine designs and further increase engine efficiencies. To meet constantly stricter emission regulations, lean burn combustion could play a key role for future engine designs. However, these combustion systems are characterized by significant swirl for flame stabilization and reduced cooling air mass flows. As a result, substantial spatial and transient variations of the turbine inlet conditions are encountered. To investigate the effect of the combustor on the high pressure turbine, a rotating cooled transonic high-pressure configuration has been designed and investigated experimentally at the DLR turbine test facility ‘NG-Turb’ in Göttingen, Germany. It is a rotating full annular 1.5 stage turbine configuration which is coupled to a combustor simulator. The combustor simulator is designed to create turbine inlet conditions which are hydrodynamically representative for a lean-burn aero engine. A detailed description of the test rig and its instrumentation as well as a discussion of the measurement results is presented in part I of this paper. Part II focuses on numerical modeling of the test rig to further extend the understanding of the measurement results. Integrated simulations of the configuration including combustor simulator and nozzle guide vanes are performed for leading edge and passage clocking position and the effect on the hot streak migration is discussed. The simulation and experimental results at the combustor-turbine interface are compared showing a good overall agreement. The relevant flow features are correctly predicted in the simulations, proving the suitability of the numerical model for application to integrated combustor-turbine interaction analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.