HL-60 leukemia cells, Rat-1 fibroblasts and WI-38 diploid fibroblasts were exposed for 24-72 h to 0.5-1.0-mT 50-Hz extremely low frequency electromagnetic field (ELF-EMF). This treatment induced a dose-dependent increase in the proliferation rate of all cell types, namely about 30% increase of cell proliferation after 72-h exposure to 1.0 mT. This was accompanied by increased percentage of cells in the S-phase after 12- and 48-h exposure. The ability of ELF-EMF to induce DNA damage was also investigated by measuring DNA strand breaks. A dose-dependent increase in DNA damage was observed in all cell lines, with two peaks occurring at 24 and 72 h. A similar pattern of DNA damage was observed by measuring formation of 8-OHdG adducts. The effects of ELF-EMF on cell proliferation and DNA damage were prevented by pretreatment of cells with an antioxidant like alpha-tocopherol, suggesting that redox reactions were involved. Accordingly, Rat-1 fibroblasts that had been exposed to ELF-EMF for 3 or 24 h exhibited a significant increase in dichlorofluorescein-detectable reactive oxygen species, which was blunted by alpha-tocopherol pretreatment. Cells exposed to ELF-EMF and examined as early as 6 h after treatment initiation also exhibited modifications of NF kappa B-related proteins (p65-p50 and I kappa B alpha), which were suggestive of increased formation of p65-p50 or p65-p65 active forms, a process usually attributed to redox reactions. These results suggest that ELF-EMF influence proliferation and DNA damage in both normal and tumor cells through the action of free radical species. This information may be of value for appraising the pathophysiologic consequences of an exposure to ELF-EMF.
There is an unsettled debate about the role of magnesium as a 'chronic regulator' of biological functions, as opposed to the well-known role for calcium as an 'acute regulator'. New and old findings appear to delineate an increasingly complex and important role for magnesium in many cellular functions. This review summarizes the available evidence for a link between the regulation of intracellular magnesium availability and the control of cell growth, energy metabolism and death, both in healthy and diseased conditions. A comprehensive view is precluded by technical difficulties in tracing magnesium within a multicompartment and dynamic environment like the cell; nevertheless, the last few years has witnessed encouraging progress towards a better characterization of magnesium transport and its storage or mobilization inside the cell. The latest findings pave the road towards a new and deeper appreciation of magnesium homoeostasis and its role in the regulation of essential cell functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.