International audienceWe present forward and adjoint spectral-element simulations of coupled acoustic and (an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Simulations benefit from recent advances in hexahedral meshing, load balancing and software optimization. Meshing may be accomplished using a mesh generation tool kit such as CUBIT, and load balancing is facilitated by graph partitioning based on the SCOTCH library. Coupling between fluid and solid regions is incorporated in a straightforward fashion using domain decomposition. Topography, bathymetry and Moho undulations may be readily included in the mesh, and physical dispersion and attenuation associated with anelasticity are accounted for using a series of standard linear solids. Finite-frequency Fr'echet derivatives are calculated using adjoint methods in both fluid and solid domains. The software is benchmarked for a layercake model. We present various examples of fully unstructured meshes, snapshots of wavefields and finite-frequency kernels generated by Version 2.0 'Sesame' of our widely used open source spectral-element package SPECFEM3D
We study the 30 October 2016 Norcia earthquake (MW 6.5) to retrieve the rupture history by jointly inverting seismograms and coseismic Global Positioning System displacements obtained by dense local networks. The adopted fault geometry consists of a main normal fault striking N155° and dipping 47° belonging to the Mt. Vettore‐Mt. Bove fault system (VBFS) and a secondary fault plane striking N210° and dipping 36° to the NW. The coseismic rupture initiated on the VBFS and propagated with similar rupture velocity on both fault planes. Updip from the nucleation point, two main slip patches have been imaged on these fault segments, both characterized by similar peak‐slip values (~3 m) and rupture times (~3 s). After the breakage of the two main slip patches, coseismic rupture further propagated southeastward along the VBFS, rupturing again the same fault portion that slipped during the 24 August earthquake. The retrieved coseismic slip distribution is consistent with the observed surface breakages and the deformation pattern inferred from interferometric synthetic aperture radar measurements. Our results show that three different fault systems were activated during the 30 October earthquake. The composite rupture model inferred in this study provides evidences that also a deep portion of the NNE trending section of the Olevano‐Antrodoco‐Sibillini thrust broke coseismically, implying the kinematic inversion of a thrust ramp. The obtained rupture history indicates that in this sector of the Apennines, compressional structures inherited from past tectonics can alternatively segment boundaries of NW trending active normal faults or break coseismically during moderate‐to‐large magnitude earthquakes.
We adopt a spectral-element method (SEM) to perform numerical simulations of the complex wavefield generated by the 6 April 2009 M w 6.3 L'Aquila earthquake in central Italy. The mainshock is represented by a finite-fault solution obtained by inverting strong-motion and Global Positioning System data, testing both 1D and 3D wavespeed models for central Italy. Surface topography, attenuation, and the Moho discontinuity are also accommodated. Including these complexities is essential to accurately simulate seismic-wave propagation. Three-component synthetic waveforms are compared to corresponding velocimeter and strong-motion recordings. The results show a favorable match between data and synthetics up to ∼0:5 Hz in a 200 km × 200 km × 60 km model volume, capturing features mainly related to topography or low-wavespeed basins. We construct synthetic peak ground velocity maps that, for the 3D model, are in good agreement with observations, thus providing valuable information for seismic-hazard assessment. Exploiting the SEM in combination with an adjoint method, we calculate finite-frequency kernels for specific seismic arrivals. These kernels capture the volumetric sensitivity associated with the selected waveform and highlight prominent effects of topography on seismic-wave propagation in central Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.