■ AbstractIn the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.
The degradation of von Willebrand factor (VWF) depends on the activity of a zinc protease (referred to as ADAMTS-13), which cleaves VWF at the Tyr 1605 -Met 1606 peptide bond. Little information is available on the physiological mechanisms involved in regulation of AD-AMTS-13 activity. In this study, the role of ions on the ADAMTS-13/VWF interaction was investigated. In the presence of 1.5 M urea, the protease cleaved multimeric VWF in the absence of NaCl at pH 8.00 and 37°C, with an apparent k cat /K m Х 3.4 ؋ 10 4 M ؊1 s ؊1 , but this value decreased by ϳ10-fold in the presence of 0.15 M NaCl. Using several monovalent salts, the inhibitory effect was attributed mostly to anions, whose potency was inversely related to the corresponding Jones-Dole viscosity B coefficients (ClO 4 ؊ > Cl ؊ > F ؊ ). The specific inhibitory effect of anions was due to their binding to VWF, which caused a conformational change responsible for quenching the intrinsic fluorescence of the protein and reducing tyrosine exposition to bulk solvent. Ristocetin binding to VWF could reduce the apparent affinity and reverse the inhibitory effect of chloride. We hypothesize that, after secretion into the extracellular compartment, VWF is bound by chloride ions abundantly present in this milieu, becoming unavailable to proteolysis by AD-AMTS-13. Shear forces, which facilitate GpIb␣ binding (this effect being artificially obtained by ristocetin), can reverse the inhibitory effect of chloride, whose concentration gradient across the cell membrane may represent a simple but efficient strategy to regulate the enzymatic activity of ADAMTS-13.
These are the first data about phospholipase A2 in neonates. The enzyme plays a role in neonatal lung injury, especially in infection related respiratory failure. It is associated with lung stiffness, higher mean airway pressure and need for oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.